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Solutions to Review Problems for Final Exam

1. In this problem, x and y denote vectors in Rn.

(a) Use the triangle inequality to derive the inequality

| ‖y‖ − ‖x‖ | 6 ‖y − x‖ for all x, y ∈ Rn.

Solution: Apply the triangle inequality to obtain

‖x‖ = ‖(x− y) + y‖ 6 ‖x− y‖+ ‖y‖,

from which we get that

‖x‖ − ‖y‖ 6 ‖y − x‖, (1)

where we have used the fact that ‖y − x‖ = ‖x − y‖. Similarly,
from

‖y‖ = ‖(y − x) + x‖ 6 ‖y − x‖+ ‖x‖,

we get
‖y‖ − ‖x‖ 6 ‖y − x‖. (2)

Combining (1) and (2) yields

| ‖y‖ − ‖x‖ | 6 ‖y − x‖. (3)

�

(b) Use the inequality derived in the previous part to show that the function
f : Rn → R given by f(x) = ‖x‖, for all x ∈ Rn, is continuous.

Solution: Using the inequality in (3) we get

0 6 |f(y)− f(x)| 6 ‖y − x‖.

Thus, by the Squeeze Theorem, we get that

lim
‖y−x‖→0

|f(y)− f(x)| = 0.

which shows that f is continuous at x for every x in Rn. �

(c) Prove that the function g : Rn → R given by g(x) = sin(‖x‖), for allx ∈ Rn,
is continuous.
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Solution: Note that g = sin ◦f , where f : Rn → R, given by
f(x) = ‖x‖ for all x ∈ Rn, is continuous on Rn by the result in
part (b). Thus, since sin : R → R is continuous, it follows that
g is continuous because it is the composition of two continuous
functions. �

2. Define the scalar field f : Rn → R by f(x) = ‖x‖2 for all x ∈ Rn.

(a) Show that f is differentiable on Rn and compute the linear map

Df(x) : Rn → R for all x ∈ Rn.

What is the gradient of f at x for all x ∈ Rn?

Solution: For w ∈ Rn, write

f(x+ w) = ‖x+ w‖2

= (x+ w · x+ w)

= x · x+ x · w + w · x+ w · w

= ‖x‖2 + 2x · w + ‖w‖2.

Consequently,

f(x+ w) = f(x) + 2x · w + Ex(w),

where Ex(w) = ‖w‖2 satisfies

lim
‖w‖→0

|Ex(w)|
‖w‖

= 0.

Therefore, f is differentiable at x and the derivative map,

Df(x) : Rn → R,

of f at x is given by

Df(x)w = 2x · w for all x ∈ Rn.

We then have that the gradient of f at x is given by

∇f(x) = 2x for all x ∈ Rn.

�
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Alternate Solution: Write x = (x1, x2, . . . , xn) so that

f(x) = x2
1 + x2

2 + · · ·+ x2
n for all x ∈ Rn.

We then have that the partial derivatives of f at x exist and are
given by

∂f

∂xi
(x) = 2xi for i = 1, 2, . . . , n and for all x ∈ Rn.

Thus, all the partial derivative of f at x are continuous and there-
fore f is a C1 map. This implies that f is differentiable and its
derivative is given by

Df(x)w = ∇f(x) · w for all x ∈ Rn,

where
∇f(x) = 2x for all x ∈ Rn.

�

(b) Let û denote a unit vector in Rn. For a fixed vector v in Rn, define
g : R→ R by g(t) = ‖v − tû‖2, for all t ∈ R. Show that g is differentiable
and compute g′(t) for all t ∈ R.

Solution: Observe that g = f ◦ σ where f is given in part (a)
and σ : R→ Rn is the path given by

σ(t) = v − tû for all t ∈ R.

Note that σ is differentiable with derivative given by σ′(t) = −û
for all t ∈ R. It then follows by the Chain Rule and part (a) that
g is differentiable and its derivative is given by

g′(t) = Df(σ(t))σ′(t) = 2σ(t) · σ′(t) for all t ∈ R,

or
g′(t) = 2(v − tû) · (−û)

= 2(−v · û+ t),

since ‖û‖ = 1. �

(c) Let û be as in the previous part. For any v ∈ Rn, give the point on the
line spanned by û which is the closest to v. Justify your answer.
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Solution: The point on the line spanned by û which is the closest
to v is a point determined by the vector toû, where to ∈ R at which
the function g(t) = ‖v − tû‖2 is the smallest possible. Thus, we
need to minimize the function g defined in part (b). Since this
function is differentiable, we may first locate its critical points by
solving

g′(t) = 0.

This yields to = v · û. Note that sice g′′(t) = 2 > 0, we get
that g(to) is a global minimum for g. Thus, the point on the line
spanned by û which is the closest to v is the point determined by
the vector (v · û)û. �

3. For points P1(1, 4, 7), P2(7, 1, 4) and P3(4, 7, 1) in R3, define the oriented triangle

T = [P1, P2, P3], and evaluate

∫
T

dx ∧ dy.

Solution: Define the vectors

v =
−−→
P1P2 =

 6
−3
−3

 and w =
−−→
P1P3 =

 3
3
−6

 .

Then, ∫
T

dx ∧ dy =
1

2
(v × w) · k̂,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
6 −3 −3
3 3 −6

∣∣∣∣∣∣
=

∣∣∣∣−3 −3
3 −6

∣∣∣∣ î− ∣∣∣∣ 6 −3
3 −6

∣∣∣∣ ĵ +

∣∣∣∣ 6 −3
3 3

∣∣∣∣ k̂
= 27̂i+ 27ĵ + 27k̂.

Consequently, ∫
T

dx ∧ dy =
27

2
.

�
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4. Let Φ: R2 → R2 denote the map from the uv–plane to the xy–plane given by

Φ

(
u
v

)
=

(
2u
v2

)
for all

(
u
v

)
∈ R2,

and let T be the oriented triangle [(0, 0), (1, 0), (1, 1)] in the uv–plane.

(a) Give the image, R, of the triangle T under the map Φ, and sketch it in the
xy–plane.

Solution: The image of R under Φ is the set

Φ(R) = {(x, y) ∈ R2 | x = 2u, y = v2, for some (u, v) ∈ R}

= {(x, y) ∈ R2 | 0 6 x 6 2, 0 6 y 6 x2/4R}.

A sketch of Φ(R) is shown in Figure 1.

x

y

Φ(R)
y = x2/4

Figure 1: Sketch of Region Φ(R)

�

(b) Show that Φ is differentiable and give a formula for its derivative at every

point

(
u
v

)
in R2.

Solution: Write

Φ

(
u
v

)
=

(
f(u, v)
g(u, v)

)
for all

(
u
v

)
∈ R2,

where f(u, v) = 2u and g(u, v) = v2 for all

(
u
v

)
∈ R2. Observe

that the partial derivatives of f and g exist and are given by

∂f

∂u
(u, v) = 2,

∂f

∂v
(u, v) = 0

∂g

∂u
(u, v) = 0,

∂g

∂v
(u, v) = 2v.
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Note that the partial derivatives of f and g are continuous. There-
fore, Φ is a C1 map. Hence, Φ is differentiable on R2 and its deriva-
tive map at (u, v), for any (u, v) ∈ R2 is given by multiplication
by the Jacobian matrix

DΦ(u, v) =

(
2 0
0 2v

)
;

that is,

DΦ(u, v)

(
h
k

)
=

(
2 0
0 2v

)(
h
k

)
=

(
2h
2vk

)

for all

(
h
k

)
∈ R2. �

5. Compute the arc length along the portion of the cycloid given by the parametric
equations

x = t− sin t and y = 1− cos t, for t ∈ R,

from the point (0, 0) to the point (2π, 0).

Solution: Put σ(t) = (t− sin t, 1− cos t) for t ∈ R. Then,

σ′(t) = (1− cos t, sin t) for all t ∈ R,

and therefore

‖σ′(t)‖2 = (1− cos t)2 + sin2 t for al t ∈ R,

which may be simplified to

‖σ′(t)‖2 = 1− 2 cos t+ cos2 t+ sin2 t
= 2− 2 cos t
= 2(1− cos t)

= 4 sin2

(
t

2

)
.

Taking square roots on both sides we get that

‖σ′(t)‖ = 2
∣∣∣ sin( t

2

) ∣∣∣ for all t ∈ R.
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Next, since 0 6
t

2
6 π for 0 6 t 6 2π, it follows that the arc length

along the portion of the cycloid parametrized by σ(t) for 0 6 t 6 2π
is ∫ 2π

0

‖σ′(t)‖ dt =

∫ 2π

0

2 sin

(
t

2

)
dt

=

[
−4 cos

(
t

2

)]2π

0

= 8.

�

6. Evaluate the double integral

∫
R

e−x
2

dxdy, where R is the region in the xy–plane

sketched in Figure 2.

x

y

R

�
�
�
�
�
�
�
�
�
�
��

y = 2x

Figure 2: Sketch of Region R in Problem 6
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Solution: Compute∫
R

e−x
2

dxdy =

∫ 2

0

∫ 2x

0

e−x
2

dydx

=

∫ 2

0

2xe−x
2

dx

=
[
−e−x2

]2
0

= 1− e−4.

�

7. Evaluate the line integral

∫
∂R

ω, where ω is the differential 1–form

ω = (x4 + y) dx+ (2x− y4) dy,

R is the rectangular region

R = {(x, y) ∈ R2 | −1 6 x 6 3, −2 6 y 6 1},

and ∂R is traversed in the counterclockwise sense.

Solution: Use the Fundamental Theorem of Calculus:∫
∂R

ω =

∫
R

dω,

where

dω = d(x4 + y) ∧ dx+ d(2x− y4) ∧ dy

= (4x3dx+ dy) ∧ dx+ (2dx− 4y3dy) ∧ dy

= dy ∧ dx+ 2dx ∧ dy

= dx ∧ dy,

since dy ∧ dx = −dx ∧ dy. Consequently,∫
∂R

ω =

∫
R

dx ∧ dy = area(R) = 12,

since R is a rectangle of dimensions 4 and 3 units. �
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8. Let g : R3 → R be differentiable and define

S = g−1(c) = {(x, y, z) ∈ R3 | g(x, y, z) = c}

for some constant c. Assume that S 6= ∅ and that ∇g(x, y, x) 6= 0 for all
(x, y, z) ∈ S. Let I be an open interval or real numbers and let σ : I → R3 be
a differentiable path satisfying σ(t) ∈ S for all t ∈ I. Prove that ∇g(σ(t)) is
orthogonal to σ′(t) for all t ∈ I.

Solution: Since σ(t) ∈ S for all t ∈ I, it follows that

g(σ(t)) = c for all t ∈ I.

Thus, differentiating with respect to t on both sides and applying the
Chain Rule, we obtain that

∇g(σ(t)) · σ′(t) = 0, for all t ∈ I,

which shows that ∇g(σ(t)) is orthogonal to σ′(t) for all t ∈ I. �


