Solutions to Review Problems for Final Exam

1. In this problem, x and y denote vectors in \mathbb{R}^{n}.
(a) Use the triangle inequality to derive the inequality

$$
|\|y\|-\|x\|| \leqslant\|y-x\| \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Solution: Apply the triangle inequality to obtain

$$
\|x\|=\|(x-y)+y\| \leqslant\|x-y\|+\|y\|
$$

from which we get that

$$
\begin{equation*}
\|x\|-\|y\| \leqslant\|y-x\| \tag{1}
\end{equation*}
$$

where we have used the fact that $\|y-x\|=\|x-y\|$. Similarly, from

$$
\|y\|=\|(y-x)+x\| \leqslant\|y-x\|+\|x\|
$$

we get

$$
\begin{equation*}
\|y\|-\|x\| \leqslant\|y-x\| \tag{2}
\end{equation*}
$$

Combining (1) and (2) yields

$$
\begin{equation*}
|\|y\|-\|x\|| \leqslant\|y-x\| \tag{3}
\end{equation*}
$$

(b) Use the inequality derived in the previous part to show that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=\|x\|$, for all $x \in \mathbb{R}^{n}$, is continuous.

Solution: Using the inequality in (3) we get

$$
0 \leqslant|f(y)-f(x)| \leqslant\|y-x\|
$$

Thus, by the Squeeze Theorem, we get that

$$
\lim _{\|y-x\| \rightarrow 0}|f(y)-f(x)|=0
$$

which shows that f is continuous at x for every x in \mathbb{R}^{n}.
(c) Prove that the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(x)=\sin (\|x\|)$, for all $x \in \mathbb{R}^{n}$, is continuous.

Solution: Note that $g=\sin \circ f$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by $f(x)=\|x\|$ for all $x \in \mathbb{R}^{n}$, is continuous on \mathbb{R}^{n} by the result in part (b). Thus, since $\sin : \mathbb{R} \rightarrow \mathbb{R}$ is continuous, it follows that g is continuous because it is the composition of two continuous functions.
2. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$.
(a) Show that f is differentiable on \mathbb{R}^{n} and compute the linear map

$$
D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \text { for all } x \in \mathbb{R}^{n}
$$

What is the gradient of f at x for all $x \in \mathbb{R}^{n}$?
Solution: For $w \in \mathbb{R}^{n}$, write

$$
\begin{aligned}
f(x+w) & =\|x+w\|^{2} \\
& =(x+w \cdot x+w) \\
& =x \cdot x+x \cdot w+w \cdot x+w \cdot w \\
& =\|x\|^{2}+2 x \cdot w+\|w\|^{2} .
\end{aligned}
$$

Consequently,

$$
f(x+w)=f(x)+2 x \cdot w+E_{x}(w)
$$

where $E_{x}(w)=\|w\|^{2}$ satisfies

$$
\lim _{\|w\| \rightarrow 0} \frac{\left|E_{x}(w)\right|}{\|w\|}=0
$$

Therefore, f is differentiable at x and the derivative map,

$$
D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

of f at x is given by

$$
D f(x) w=2 x \cdot w \quad \text { for all } x \in \mathbb{R}^{n}
$$

We then have that the gradient of f at x is given by

$$
\nabla f(x)=2 x \quad \text { for all } x \in \mathbb{R}^{n}
$$

Alternate Solution: Write $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ so that

$$
f(x)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \quad \text { for all } x \in \mathbb{R}^{n}
$$

We then have that the partial derivatives of f at x exist and are given by

$$
\frac{\partial f}{\partial x_{i}}(x)=2 x_{i} \text { for } i=1,2, \ldots, n \text { and for all } x \in \mathbb{R}^{n}
$$

Thus, all the partial derivative of f at x are continuous and therefore f is a C^{1} map. This implies that f is differentiable and its derivative is given by

$$
D f(x) w=\nabla f(x) \cdot w \quad \text { for all } x \in \mathbb{R}^{n}
$$

where

$$
\nabla f(x)=2 x \quad \text { for all } x \in \mathbb{R}^{n}
$$

(b) Let \widehat{u} denote a unit vector in \mathbb{R}^{n}. For a fixed vector v in \mathbb{R}^{n}, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=\|v-t \widehat{u}\|^{2}$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute $g^{\prime}(t)$ for all $t \in \mathbb{R}$.

Solution: Observe that $g=f \circ \sigma$ where f is given in part (a) and $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is the path given by

$$
\sigma(t)=v-t \widehat{u} \quad \text { for all } t \in \mathbb{R}
$$

Note that σ is differentiable with derivative given by $\sigma^{\prime}(t)=-\widehat{u}$ for all $t \in \mathbb{R}$. It then follows by the Chain Rule and part (a) that g is differentiable and its derivative is given by

$$
g^{\prime}(t)=D f(\sigma(t)) \sigma^{\prime}(t)=2 \sigma(t) \cdot \sigma^{\prime}(t) \quad \text { for all } t \in \mathbb{R}
$$

or

$$
\begin{aligned}
g^{\prime}(t) & =2(v-t \widehat{u}) \cdot(-\widehat{u}) \\
& =2(-v \cdot \widehat{u}+t)
\end{aligned}
$$

since $\|\widehat{u}\|=1$.
(c) Let \widehat{u} be as in the previous part. For any $v \in \mathbb{R}^{n}$, give the point on the line spanned by \widehat{u} which is the closest to v. Justify your answer.

Solution: The point on the line spanned by \widehat{u} which is the closest to v is a point determined by the vector $t_{o} \widehat{u}$, where $t_{o} \in \mathbb{R}$ at which the function $g(t)=\|v-t \widehat{u}\|^{2}$ is the smallest possible. Thus, we need to minimize the function g defined in part (b). Since this function is differentiable, we may first locate its critical points by solving

$$
g^{\prime}(t)=0
$$

This yields $t_{o}=v \cdot \widehat{u}$. Note that sice $g^{\prime \prime}(t)=2>0$, we get that $g\left(t_{o}\right)$ is a global minimum for g. Thus, the point on the line spanned by \widehat{u} which is the closest to v is the point determined by the vector $(v \cdot \widehat{u}) \widehat{u}$.
3. For points $P_{1}(1,4,7), P_{2}(7,1,4)$ and $P_{3}(4,7,1)$ in \mathbb{R}^{3}, define the oriented triangle $T=\left[P_{1}, P_{2}, P_{3}\right]$, and evaluate $\int_{T} \mathrm{~d} x \wedge \mathrm{~d} y$.

Solution: Define the vectors

$$
v=\overrightarrow{P_{1} P_{2}}=\left(\begin{array}{r}
6 \\
-3 \\
-3
\end{array}\right) \quad \text { and } \quad w=\overrightarrow{P_{1} P_{3}}=\left(\begin{array}{r}
3 \\
3 \\
-6
\end{array}\right) .
$$

Then,

$$
\int_{T} \mathrm{~d} x \wedge \mathrm{~d} y=\frac{1}{2}(v \times w) \cdot \widehat{k}
$$

where

$$
\begin{aligned}
v \times w & =\left|\begin{array}{rrr}
\widehat{i} & \widehat{j} & \widehat{k} \\
6 & -3 & -3 \\
3 & 3 & -6
\end{array}\right| \\
& =\left|\begin{array}{rr}
-3 & -3 \\
3 & -6
\end{array}\right| \widehat{i}-\left|\begin{array}{rr}
6 & -3 \\
3 & -6
\end{array}\right| \widehat{j}+\left|\begin{array}{rr}
6 & -3 \\
3 & 3
\end{array}\right| \widehat{k} \\
& =27 \widehat{i}+27 \widehat{j}+27 \widehat{k} .
\end{aligned}
$$

Consequently,

$$
\int_{T} \mathrm{~d} x \wedge \mathrm{~d} y=\frac{27}{2}
$$

4. Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the map from the $u v$-plane to the $x y$-plane given by

$$
\Phi\binom{u}{v}=\binom{2 u}{v^{2}} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2}
$$

and let T be the oriented triangle $[(0,0),(1,0),(1,1)]$ in the $u v$-plane.
(a) Give the image, R, of the triangle T under the map Φ, and sketch it in the $x y$-plane.

Solution: The image of R under Φ is the set

$$
\begin{aligned}
\Phi(R) & =\left\{(x, y) \in \mathbb{R}^{2} \mid x=2 u, y=v^{2}, \text { for some }(u, v) \in \mathbb{R}\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant x^{2} / 4 \mathbb{R}\right\}
\end{aligned}
$$

A sketch of $\Phi(R)$ is shown in Figure 1.

Figure 1: Sketch of Region $\Phi(R)$
(b) Show that Φ is differentiable and give a formula for its derivative at every point $\binom{u}{v}$ in \mathbb{R}^{2}.

Solution: Write

$$
\Phi\binom{u}{v}=\binom{f(u, v)}{g(u, v)} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2}
$$

where $f(u, v)=2 u$ and $g(u, v)=v^{2}$ for all $\binom{u}{v} \in \mathbb{R}^{2}$. Observe
that the partial derivatives of f and g exist and are given by

$$
\begin{array}{ll}
\frac{\partial f}{\partial u}(u, v)=2, & \frac{\partial f}{\partial v}(u, v)=0 \\
\frac{\partial g}{\partial u}(u, v)=0, & \frac{\partial g}{\partial v}(u, v)=2 v
\end{array}
$$

Note that the partial derivatives of f and g are continuous. Therefore, Φ is a C^{1} map. Hence, Φ is differentiable on \mathbb{R}^{2} and its derivative map at (u, v), for any $(u, v) \in \mathbb{R}^{2}$ is given by multiplication by the Jacobian matrix

$$
D \Phi(u, v)=\left(\begin{array}{cc}
2 & 0 \\
0 & 2 v
\end{array}\right)
$$

that is,

$$
\begin{aligned}
& \qquad D \Phi(u, v)\binom{h}{k}=\left(\begin{array}{cc}
2 & 0 \\
0 & 2 v
\end{array}\right)\binom{h}{k}=\binom{2 h}{2 v k} \\
& \text { for all }\binom{h}{k} \in \mathbb{R}^{2} .
\end{aligned}
$$

5. Compute the arc length along the portion of the cycloid given by the parametric equations

$$
x=t-\sin t \quad \text { and } \quad y=1-\cos t, \quad \text { for } t \in \mathbb{R}
$$

from the point $(0,0)$ to the point $(2 \pi, 0)$.
Solution: Put $\sigma(t)=(t-\sin t, 1-\cos t)$ for $t \in \mathbb{R}$. Then,

$$
\sigma^{\prime}(t)=(1-\cos t, \sin t) \quad \text { for all } t \in \mathbb{R}
$$

and therefore

$$
\left\|\sigma^{\prime}(t)\right\|^{2}=(1-\cos t)^{2}+\sin ^{2} t \quad \text { for al } t \in \mathbb{R}
$$

which may be simplified to

$$
\begin{aligned}
\left\|\sigma^{\prime}(t)\right\|^{2} & =1-2 \cos t+\cos ^{2} t+\sin ^{2} t \\
& =2-2 \cos t \\
& =2(1-\cos t) \\
& =4 \sin ^{2}\left(\frac{t}{2}\right)
\end{aligned}
$$

Taking square roots on both sides we get that

$$
\left\|\sigma^{\prime}(t)\right\|=2\left|\sin \left(\frac{t}{2}\right)\right| \quad \text { for all } t \in \mathbb{R}
$$

Next, since $0 \leqslant \frac{t}{2} \leqslant \pi$ for $0 \leqslant t \leqslant 2 \pi$, it follows that the arc length along the portion of the cycloid parametrized by $\sigma(t)$ for $0 \leqslant t \leqslant 2 \pi$ is

$$
\begin{aligned}
\int_{0}^{2 \pi}\left\|\sigma^{\prime}(t)\right\| \mathrm{d} t & =\int_{0}^{2 \pi} 2 \sin \left(\frac{t}{2}\right) \mathrm{d} t \\
& =\left[-4 \cos \left(\frac{t}{2}\right)\right]_{0}^{2 \pi} \\
& =8
\end{aligned}
$$

6. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y$-plane sketched in Figure 2.

Figure 2: Sketch of Region R in Problem 6

Solution: Compute

$$
\begin{aligned}
\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{2 x} e^{-x^{2}} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} 2 x e^{-x^{2}} \mathrm{~d} x \\
& =\left[-e^{-x^{2}}\right]_{0}^{2} \\
& =1-e^{-4}
\end{aligned}
$$

7. Evaluate the line integral $\int_{\partial R} \omega$, where ω is the differential 1-form

$$
\omega=\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y
$$

R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
Solution: Use the Fundamental Theorem of Calculus:

$$
\int_{\partial R} \omega=\int_{R} \mathrm{~d} \omega
$$

where

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d}\left(x^{4}+y\right) \wedge \mathrm{d} x+\mathrm{d}\left(2 x-y^{4}\right) \wedge \mathrm{d} y \\
& =\left(4 x^{3} \mathrm{~d} x+\mathrm{d} y\right) \wedge \mathrm{d} x+\left(2 \mathrm{~d} x-4 y^{3} \mathrm{~d} y\right) \wedge \mathrm{d} y \\
& =\mathrm{d} y \wedge \mathrm{~d} x+2 \mathrm{~d} x \wedge \mathrm{~d} y \\
& =\mathrm{d} x \wedge \mathrm{~d} y
\end{aligned}
$$

since $\mathrm{d} y \wedge \mathrm{~d} x=-\mathrm{d} x \wedge \mathrm{~d} y$. Consequently,

$$
\int_{\partial R} \omega=\int_{R} \mathrm{~d} x \wedge \mathrm{~d} y=\operatorname{area}(R)=12
$$

since R is a rectangle of dimensions 4 and 3 units.
8. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and define

$$
S=g^{-1}(c)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid g(x, y, z)=c\right\}
$$

for some constant c. Assume that $S \neq \emptyset$ and that $\nabla g(x, y, x) \neq \mathbf{0}$ for all $(x, y, z) \in S$. Let I be an open interval or real numbers and let $\sigma: I \rightarrow \mathbb{R}^{3}$ be a differentiable path satisfying $\sigma(t) \in S$ for all $t \in I$. Prove that $\nabla g(\sigma(t))$ is orthogonal to $\sigma^{\prime}(t)$ for all $t \in I$.

Solution: Since $\sigma(t) \in S$ for all $t \in I$, it follows that

$$
g(\sigma(t))=c \quad \text { for all } t \in I
$$

Thus, differentiating with respect to t on both sides and applying the Chain Rule, we obtain that

$$
\nabla g(\sigma(t)) \cdot \sigma^{\prime}(t)=0, \quad \text { for all } t \in I
$$

which shows that $\nabla g(\sigma(t))$ is orthogonal to $\sigma^{\prime}(t)$ for all $t \in I$.

