Assignment #1

Due on Wednesday, January 28, 2009

Read Section 1.5 on *Euclidean Spaces* in Messer (pp. 21–27).

Do the following problems

1. Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

(a) Write the vector $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ as a linear combination of v_1 and v_2 . That is, find scalars c_1 and c_2 such that $v = c_1v_1 + c_2v_2$.

(b) Write any vector
$$v = \begin{pmatrix} x \\ y \end{pmatrix}$$
 in \mathbb{R}^2 as a linear combination of v_1 and v_2 .

- 2. In this problem, a, b, c and d denote scalars, and elements in \mathbb{R}^n are expressed as row vectors for convenience.
 - (a) Find a, b and c so that a(2,3,-1) + b(1,0,4) + c(-3,1,2) = (7,2,5), if possible.
 - (b) Find a, b, c and d so that a(1,0,0,0,0)+b(1,1,0,0,0)+c(1,1,1,0,0)+d(1,1,1,1,0) = (8,5,-2,3,0),if possible.
- 3. Show that it is impossible to find scalars a, b, c and d so that a(1,0,0,0,0) + b(1,1,0,0,0) + c(1,1,1,0,0) + d(1,1,1,1,0) = (8,5,-2,3,1).
- 4. The equation 5x 2y + 8z = 0 describes a plane in \mathbb{R}^3 . Let (a_1, a_2, a_3) be any point on the plane; that is $5a_1 2a_2 + 8a_3 = 0$. Show that the vector $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ is a linear combination of the vectors

$$\begin{pmatrix} 2\\5\\0 \end{pmatrix}, \quad \begin{pmatrix} 0\\4\\1 \end{pmatrix}.$$

5. Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid (x_1, x_2, x_3) = c_1(2, 5, 0) + c_2(0, 4, 1)\}$ show that if $(x, y, z) \in W$, then 5x - 2y + 8z = 0. What can you conclude from this and the statement in problem 4?