Assignment #10

Due on Friday, February 27, 2009

Read Section 3.5 on *Dimension* in Messer (pp. 114–121).

Background and Definitions

(Definition of dimension of a subspace of \mathbb{R}^n). Let W be a subspace of \mathbb{R}^n . The dimension of W, denoted by dim(W), is the number of vectors in any basis for W.

Do the following problems

1. Let

$$W_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + y - z = 0 \right\} \text{ and } W_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 2y + z = 0 \right\}.$$

Find a bases for W_1 and W_2 and compute dim (W_1) and dim (W_2) .

- 2. Let W_1 and W_2 be as defined in Problem 1. Find a basis for $W_1 \cap W_2$ and compute dim $(W_1 \cap W_2)$.
- 3. Let W_1 and W_2 be as defined in Problem 1. Find a basis for $W_1 + W_2$ and compute dim $(W_1 + W_2)$.

Use the results of Problems 1 and 2 to verify that

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

4. Let
$$A = \begin{pmatrix} 1 & -2 & -3 & 0 \\ -1 & 0 & 2 & 1 \\ 1 & 4 & 0 & -3 \end{pmatrix}$$
.

- (a) Find a basis for the column space, C_A , of the matrix A and compute $\dim(C_A)$.
- (b) Find a basis for the null space, N_A , of the matrix A and compute dim (N_A) .
- (c) Compute $\dim(N_A) + \dim(C_A)$. What do you observe?
- 5. Let A denote the matrix defined in the previous problem. Consider the rows of A as row vectors in \mathbb{R}^4 , and let R_A denote the span of the rows of the matrix A. Find a basis for R_A , and compute dim (R_A) . What do you find interesting about dim (R_A) and dim (C_A) , which was computed in the previous problem.