Assignment #11

Due on Monday, March 2, 2009

Read Section 3.6 on *Coordinates* in Messer (pp. 123–127).

Background and Definitions

- (Ordered Basis). Let W be a subspace of \mathbb{R}^n of dimension k and let B denote a basis for W. If the elements in B are listed in a specified order: $B = \{w_1, w_2, \ldots, w_k\}$, then B is called an **ordered basis**. In this sense, the basis $B_1 = \{w_2, w_1, \ldots, w_k\}$ is different from B even though, as sets, B and B_1 are the same; that is, the contain the same elements.
- (Coordinates Relative to a Basis). Let W be a subspace of \mathbb{R}^n and

$$B = \{w_1, w_2, \dots, w_k\}$$

be an ordered basis for W. Given any vector, v, in W, the **coordinates of** v relative to the basis B, are the unique set of scalars c_1, c_2, \ldots, c_k such that

$$v = c_1 w_1 + c_2 w_2 + \dots + c_k w_k.$$

We denote the coordinates of v relative to the basis B by the symbol $[v]_B$ and

write $[v]_B = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$. The vector $[v]_B$ in \mathbb{R}^k is also called the **coordinates**

vector for v with respect to the basis B.

Do the following problems

1. Let
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - 2y + z = 0 \right\}.$$

(a) Show that the set $B = \left\{ \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\}$ is a basis for $W.$
(b) Let $v = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$. Show that $v \in W$ and compute $[v]_B.$

Math 60. Rumbos

2. Suppose that B is an ordered basis for \mathbb{R}^2 satisfying

$$\begin{bmatrix} \begin{pmatrix} 3\\2 \end{bmatrix}_B = \begin{pmatrix} 1\\1 \end{pmatrix} \quad \text{and} \quad \begin{bmatrix} \begin{pmatrix} -1\\4 \end{bmatrix}_B = \begin{pmatrix} 2\\1 \end{pmatrix}.$$

Determine the two vectors in the basis B.

3. Find a condition on the scalars a, b, c and d so that the columns of the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

are linearly independent in \mathbb{R}^2 .

Suggestion: Consider the cases a = 0 and $a \neq 0$ separately.

- 4. Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfy the condition you discovered in Problem 3. Prove that the columns of A span \mathbb{R}^2 .
- 5. Let the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfy the condition you discovered in Problem 3 and denote the columns of A by C_1 and C_2 , respectively; that is,

$$C_1 = \begin{pmatrix} a \\ c \end{pmatrix}$$
 and $C_2 = \begin{pmatrix} b \\ d \end{pmatrix}$,

Find the coordinates of any vector $v = \begin{pmatrix} x \\ y \end{pmatrix}$ in \mathbb{R}^2 with respect to the ordered basis $B = \{C_1, C_2\}$.