Assignment \#12

Due on Wednesday, March 4, 2009
Read Section 4.1 on Inner Products and Norms in Messer (pp. 135-140).
Read Section 4.2 on Geometry in Euclidean Spaces in Messer (pp. 143-147).
Read Section 4.3 on The Cauchy-Schwarz Inequality in Messer (pp. 149-153).
Read Section 4.4 on Orthogonality in Messer (pp. 155-161).

Background and Definitions

- (Transpose of a vector). Given a vector $v=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ in \mathbb{R}^{n}, the transpose of v, denoted by v^{T}, is the row vector

$$
v^{T}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) .
$$

- (Row-Column Product). Given a row-vector, R, of dimension n and a columnvector, C, also of dimension n, we define the product $R C$ as follows:
Write $R=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]$ and $C=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$; then,

$$
R C=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

- (Euclidean inner product). Given vectors $v=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $w=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ in \mathbb{R}^{n},
the Euclidean inner product of v and w, denoted by $\langle v, w\rangle$, is the real number (or scalar) obtained by follows

$$
\langle v, w\rangle=v^{T} w=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

- (Orthogonality). Two vectors v and w in \mathbb{R}^{n} are said to be orthogonal if $\langle v, w\rangle=0$.
- (Euclidean norm). Given a vector $v=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ in \mathbb{R}^{n}, its Euclidean norm, denoted by $\|v\|$, is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle}=\sqrt{x^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

- (Unit vectors in $\left.\mathbb{R}^{n}\right)$. A vector $u \in \mathbb{R}^{n}$ is said to be a unit vector if $\|u\|=1$.

Do the following problems

1. The vectors $v_{1}=\left(\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right)$, and $\vec{v}_{2}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ span a two-dimensional subspace in \mathbb{R}^{3}, in other words, a plane through the origin. Give two unit vectors which are orthogonal to each other, and which also span the plane.
2. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 3 x-2 y+z=0\right\}$. Find a non-zero vector v in \mathbb{R}^{3} which is orthogonal to every vector in W; that is, $v \neq \mathbf{0}$ and

$$
\langle v, w\rangle=0 \quad \text { for all } \quad w \in W
$$

3. Let $u_{1}, u_{2}, \ldots, u_{n}$ be unit vectors in \mathbb{R}^{n} which are mutually orthogonal; that is,

$$
\left\langle u_{i}, u_{j}\right\rangle=0 \quad \text { for } i \neq j .
$$

Prove that the set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for \mathbb{R}^{n}, and that, for any $v \in \mathbb{R}^{n}$,

$$
v=\sum_{i=1}^{n}\left\langle v, u_{i}\right\rangle u_{i} .
$$

4. The Euclidean inner product of two vectors in \mathbb{R}^{n} is symmetric, bi-linear and positive definite; that is, for vectors v, v_{1}, v_{2} and w in \mathbb{R}^{n},
(i) $\langle v, w\rangle=\langle w, v\rangle$,
(ii) $\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle$, and
(iii) $\langle v, v\rangle \geqslant 0$ for all $v \in \mathbb{R}^{n}$ and $\langle v, v\rangle=0$ if and only if v is the zero vector.

Use these properties of the the inner product in \mathbb{R}^{n} to derive the following properties of the norm $\|\cdot\|$ in \mathbb{R}^{n} :
(a) $\|v\| \geqslant 0$ for all $v \in \mathbb{R}^{n}$ and $\|v\|=0$ if and only if $v=\mathbf{0}$.
(b) For a scalar $c,\|c v\|=|c|\|v\|$.
5. The Cauchy-Schwarz inequality for any vectors v and w in \mathbb{R}^{n} states that

$$
|\langle v, w\rangle| \leqslant\|v\|\|w\| .
$$

Use this inequality to derive the triangle inequality: For any vectors v and w in \mathbb{R}^{n},

$$
\|v+w\| \leqslant\|v\|+\|w\|
$$

(Suggestion: Start with the expression $\|v+w\|^{2}$ and use the properties of the inner product to simplify it.)

