Assignment #14

Due on Wednesday, March 25, 2009

Read Section 1.6 on *Matrices* in Messer (pp. 29–31).

Read Section 5.1 on *Matrix Algebra* in Messer (pp. 176–182).

Background and Definitions

(Identity matrix). The $n \times n$ matrix $I = [\delta_{ij}]$ defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

for $1 \leq i, j \leq n$ is called the **identity** matrix in $\mathbb{M}(n, n)$.

Do the following problems

- 1. Let $\mathbb{C}(2,2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}(2,2) \mid d = a \text{ and } c = -b \right\}$. It was shown in Problem 1 in Assignment #13 that $\mathbb{C}(2,2)$ is a subspace of $\mathbb{M}(2,2)$.
 - (a) Prove that $\mathbb{C}(2,2) = \operatorname{span}\{I,J\}$, where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- (b) Observe that $J^2 = JJ = -I$ and compute J^n , where n = 1, 2, 3, ...
- 2. Let $\mathbb{C}(2,2)$ be as in Problem 1.
 - (a) Prove that if Z_1 and Z_2 are two matrices in $\mathbb{C}(2,2)$, then $Z_1Z_2 \in \mathbb{C}(2,2)$; that is, $\mathbb{C}(2,2)$ is closed under matrix multiplication.
 - (b) Let Z_1 and Z_2 be two matrices in $\mathbb{C}(2,2)$. Prove that $Z_1Z_2 = Z_2Z_1$; that is, matrix multiplication in $\mathbb{C}(2,2)$ is commutative.
 - (c) Give the coordinates of Z_1 , Z_2 and Z_1Z_2 relative to the basis $\mathcal{B} = \{I, J\}$ of $\mathbb{C}(2, 2)$.

- 3. Let $\mathbb{C}(2,2)$ be as in Problem 1.
 - (a) Let $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where $a^2 + b^2 \neq 0$. Prove that there exists a matrix Z in $\mathbb{C}(2,2)$ such that

$$AZ = I.$$

Suggestion: Write $Z = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, where x and y denote real numbers, compute AZ and find x and y so that AZ = I. Consider separately the cases $a \neq 0$ and a = 0. Observe that, since $a^2 + b^2 \neq 0$, if a = 0, then $b \neq 0$.

- (b) Put $\mathcal{B} = \{I, J\}$ and find the coordinates of A and Z relative to \mathcal{B} .
- 4. Consider the system of linear equations

$$\begin{cases} 2x_1 - x_2 - 3x_3 = 4\\ x_1 + x_2 + x_3 = -2\\ x_1 + 2x_2 + 3x_3 = 5. \end{cases}$$
(1)

(a) Find a 3×3 matrix A and 3×1 matrices x and b (that is, x and y are vectors in \mathbb{R}^3) so that the system in (1) can be expressed as the matrix equation

$$Ax = b.$$

- (b) Let C denote the matrix $\begin{pmatrix} 1 & -3 & 2 \\ -2 & 9 & -5 \\ 1 & -5 & 3 \end{pmatrix}$, and compute the products CA, AC and Cb.
- (c) Prove that x = Cb is the unique solution to the system in (1).
- 5. Find matrices A and B in $\mathbb{M}(2,2)$ that have no entries equal to 0, but such that

$$AB = O,$$

where O denotes the 2×2 zero matrix.

Explain why, in this case, it is impossible to find 2×2 matrix C such that CA = I, where I denotes the 2×2 identity matrix.