Assignment \#14

Due on Wednesday, March 25, 2009
Read Section 1.6 on Matrices in Messer (pp. 29-31).
Read Section 5.1 on Matrix Algebra in Messer (pp. 176-182).

Background and Definitions

(Identity matrix). The $n \times n$ matrix $I=\left[\delta_{i j}\right]$ defined by

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}
$$

for $1 \leqslant i, j \leqslant n$ is called the identity matrix in $\mathbb{M}(n, n)$.

Do the following problems

1. Let $\mathbb{C}(2,2)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{M}(2,2) \right\rvert\, d=a\right.$ and $\left.c=-b\right\}$. It was shown in Problem 1 in Assignment $\# 13$ that $\mathbb{C}(2,2)$ is a subspace of $\mathbb{M}(2,2)$.
(a) Prove that $\mathbb{C}(2,2)=\operatorname{span}\{I, J\}$, where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(b) Observe that $J^{2}=J J=-I$ and compute J^{n}, where $n=1,2,3, \ldots$
2. Let $\mathbb{C}(2,2)$ be as in Problem 1.
(a) Prove that if Z_{1} and Z_{2} are two matrices in $\mathbb{C}(2,2)$, then $Z_{1} Z_{2} \in \mathbb{C}(2,2)$; that is, $\mathbb{C}(2,2)$ is closed under matrix multiplication.
(b) Let Z_{1} and Z_{2} be two matrices in $\mathbb{C}(2,2)$. Prove that $Z_{1} Z_{2}=Z_{2} Z_{1}$; that is, matrix multiplication in $\mathbb{C}(2,2)$ is commutative.
(c) Give the coordinates of Z_{1}, Z_{2} and $Z_{1} Z_{2}$ relative to the basis $\mathcal{B}=\{I, J\}$ of $\mathbb{C}(2,2)$.
3. Let $\mathbb{C}(2,2)$ be as in Problem 1.
(a) Let $A=\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)$, where $a^{2}+b^{2} \neq 0$. Prove that there exists a matrix Z in $\mathbb{C}(2,2)$ such that

$$
A Z=I
$$

Suggestion: Write $Z=\left(\begin{array}{rr}x & -y \\ y & x\end{array}\right)$, where x and y denote real numbers, compute $A Z$ and find x and y so that $A Z=I$. Consider separately the cases $a \neq 0$ and $a=0$. Observe that, since $a^{2}+b^{2} \neq 0$, if $a=0$, then $b \neq 0$.
(b) Put $\mathcal{B}=\{I, J\}$ and find the coordinates of A and Z relative to \mathcal{B}.
4. Consider the system of linear equations

$$
\left\{\begin{array}{rlr}
2 x_{1}-x_{2}-3 x_{3} & = & 4 \tag{1}\\
x_{1}+x_{2}+x_{3} & = & -2 \\
x_{1}+2 x_{2}+3 x_{3} & = & 5
\end{array}\right.
$$

(a) Find a 3×3 matrix A and 3×1 matrices x and b (that is, x and y are vectors in \mathbb{R}^{3}) so that the system in (1) can be expressed as the matrix equation

$$
A x=b .
$$

(b) Let C denote the matrix $\left(\begin{array}{rrr}1 & -3 & 2 \\ -2 & 9 & -5 \\ 1 & -5 & 3\end{array}\right)$, and compute the products $C A, A C$ and $C b$.
(c) Prove that $x=C b$ is the unique solution to the system in (1).
5. Find matrices A and B in $\mathbb{M}(2,2)$ that have no entries equal to 0 , but such that

$$
A B=O
$$

where O denotes the 2×2 zero matrix.
Explain why, in this case, it is impossible to find 2×2 matrix C such that $C A=I$, where I denotes the 2×2 identity matrix.

