Assignment \#15

Due on Monday, March 30, 2009
Read Section 1.6 on Matrices in Messer (pp. 29-31).
Read Section 5.1 on Matrix Algebra in Messer (pp. 176-182).
Do the following problems

1. Let A be an $m \times n$ matrix, and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ denote the standard basis in \mathbb{R}^{n}.
(a) Prove that $A e_{j}$ is the $j^{\text {th }}$ column of the matrix A.
(b) Use your result from part (a) to prove that $A I=A$, where I denotes the $n \times n$ identity matrix.
2. Recall that the null space of a matrix $A \in \mathbb{M}(m, n)$, denoted by N_{A}, is the space of solutions to the equation $A x=\mathbf{0}$; that is, $N_{A}=\left\{v \in \mathbb{R}^{n} \mid A v=0\right\}$. Prove that $v \in N_{A}$ if and only if v is orthogonal to the rows of A.
3. Recall that the transpose of an $m \times n$ matrix, $A=\left[a_{i j}\right]$, is the $n \times m$ matrix A^{T} given by $A^{T}=\left[a_{j i}\right]$, for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$.
Let $A \in \mathbb{M}(m, n)$ and $B \in \mathbb{M}(n, k)$. Prove that $(A B)^{T}=B^{T} A^{T}$.
4. Consider any diagonal matrix $A=\left(\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right) \in \mathbb{M}(3,3)$.

Prove that there exist constants c_{o}, c_{1}, c_{2} and c_{3} such that

$$
c_{o} I+c_{1} A+c_{2} A^{2}+c_{2} A^{3}=O
$$

where I is the identity matrix in $\mathbb{M}(3,3)$ and O denotes the 3×3 zero-matrix. In other words, there exists a polynomial, $p(x)=c_{o}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$, of degree 3 , such that $p(A)=O$.
5. Let $A=\left(\begin{array}{rrr}1 & 2 & 1 \\ 0 & -2 & 3 \\ 4 & 1 & 2\end{array}\right)$.
(a) Compute A^{2} and A^{3}.
(b) Verify that $A^{3}-A^{2}-11 A-25 I=O$, where I is the identity matrix in $\mathbb{M}(3,3)$ and O denotes the 3×3 zero-matrix.
(c) Use the result of part (b) above to find a matrix $B \in \mathbb{M}(3,3)$ such that $A B=I$.

