Assignment \#16

Due on Wednesday, April 1, 2009
Read Section 5.2 on Inverses in Messer (pp. 184-190).
Do the following problems

1. Let A denote an $m \times n$ matrix and let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ denote the standard basis in \mathbb{R}^{n}.
(a) Prove that if A has a left-inverse, B, then the set $\left\{A e_{1}, A e_{2}, \ldots, A e_{n}\right\}$ is a linearly independent subset of \mathbb{R}^{m}.
(b) Prove that if A has a right-inverse, C, then the set $\left\{A e_{1}, A e_{2}, \ldots, A e_{n}\right\}$ spans \mathbb{R}^{m}.
2. Assume $A \in \mathbb{M}(n, n)$ is invertible. Prove that the columns of A form a basis for \mathbb{R}^{n}.
3. Let A and B denote $n \times n$ matrices. Prove that if A and B are invertible, then so is their product, $A B$, and compute $(A B)^{-1}$ in terms of A^{-1} and B^{-1}.
4. An $n \times n$ matrix, E, is said to be an elementary matrix if it is the result of performing an elementary row operation on the $n \times n$ identity matrix, I. Consider the following 3×3 matrices

$$
E_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
c & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text { and } \quad E_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & d
\end{array}\right)
$$

where c and d are scalars with $d \neq 0$.
(a) Explain why E_{1}, E_{2} and E_{3} are elementary matrices.
(b) Show that E_{1}, E_{2} and E_{3} are invertible and compute there inverses. Are the inverses also elementary matrices?
(c) Given an 3×3 matrix A, what is the result of multiplying A by E_{1}, E_{2} and E_{3} on the left; that is, what are $E_{i} A$, for $i=1,2,3$?
5. Let $A \in \mathbb{M}(n, n)$ be invertible. Prove that the transpose, A^{T}, of A is also invertible and compute its inverse. Deduce, therefore, that, if A is invertible, then the rows of of A are linearly independent.

