Assignment \#17

Due on Friday, April 3, 2009
Read Section 5.2 on Inverses in Messer (pp. 184-190).

Background and Definitions

(Elementary Matrix). A matrix, $E \in \mathbb{M}(m, m)$, which is obtained from the $n \times n$ identity matrix, I, by performing a single elementary row operation on I is called an elementary matrix.
(Row Equivalence). A matrix $A \in \mathbb{M}(m, n)$ is said to be row equivalent to a matrix $B \in \mathbb{M}(m, n)$ if there exist elementary matrices, $E_{1}, E_{2}, \ldots, E_{k} \in$ $\mathbb{M}(m, m)$ such that

$$
E_{k} E_{k-1} \cdots E_{2} E_{1} A=B
$$

(Singular Matrix). A matrix $A \in \mathbb{M}(m, n)$ is said to be singular if the equation $A x=0$ has non-trivial solutions.
(Nonsingular Matrix). A matrix $A \in \mathbb{M}(m, n)$ is said to be nonsingular if the equation $A x=\mathbf{0}$ has only the trivial solution.

Do the following problems

1. Prove that if $a d-b c \neq 0$, then the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible and compute A^{-1}.
2. Let A, B and C denote matrices in $\mathbb{M}(m, n)$. Prove the following statements regarding row equivalence.
(a) A is row equivalent to itself.
(b) If A is row equivalent to B, then B is row equivalent to A.
(c) If A is row equivalent to B and B is row equivalent to C, then A is row equivalent to C.

Note: these properties are usually known as reflexivity, symmetry and transitivity, respectively, and they define an equivalence relation.
3. Use Gaussian elimination to determine whether the matrix

$$
A=\left(\begin{array}{rrr}
1 & -4 & 1 \\
0 & 3 & -1 \\
-3 & 0 & 1
\end{array}\right)
$$

is invertible or not. If A is invertible, compute its inverse.
4. Let A denote an $m \times n$ matrix.
(a) Show that if $m<n$, then A is singular.
(b) Prove that A is singular if and only if the columns of A are linearly dependent in \mathbb{R}^{m}.
5. Let A denote an $n \times n$ matrix. Prove that A is invertible if and only if A is nonsingular.

