Assignment \#18

Due on Monday, April 6, 2009
Read Section 5.2 on Inverses in Messer (pp. 184-190).

Background and Definitions

Given an $m \times n$ matrix, A,
The null space of A, denoted by \mathcal{N}_{A}, is the solution space of the homogeneous system

$$
A x=0 .
$$

Thus, \mathcal{N}_{A} is a subspace of \mathbb{R}^{n}. The dimension of \mathcal{N}_{A} is called the nullity of A and is denoted by $n(A)$.

The column space of A, denoted by \mathcal{C}_{A}, is the span of the columns of A. It is therefore a subspace of \mathbb{R}^{m}. Its dimension is called the rank of A and is denoted by $r(A)$.

The row space of A, denoted by \mathcal{R}_{A}, is the subspace of $\mathbb{M}(1, n)$ spanned by the rows of A. Its dimension is the same as the rank of $A, r(A)$.

Do the following problems

1. Let $A=\left(\begin{array}{rrr}1 & -4 & 1 \\ 0 & 3 & -1 \\ -3 & 0 & 1\end{array}\right)$. Compute the nullity and rank of A and verify that

$$
n(A)+r(A)=3
$$

2. Let $A \in \mathbb{M}(m, n)$.
(a) Prove that $n(A)=0$ if and only if the columns of A are linearly independent.
(b) Prove that $r(A)=m$ if and only if the columns of $A \operatorname{span} \mathbb{R}^{m}$.
3. Let $A \in \mathbb{M}(n, n)$. Prove that $n(A)=0$ if and only if A invertible.
4. In the text for this course, on page 188, Messer defines the rank of a matrix $A \in \mathbb{M}(m, n)$ to be the number of leading 1 s in the reduced row-echelon form of the matrix. Prove that this definition is equivalent to the one given in this assignment; that is, prove that the number of leading 1 s in the reduced rowechelon form A is the dimension of the column space of A.
5. Let $A \in \mathbb{M}(m, n)$ and write $A=\left(\begin{array}{c}R_{1} \\ R_{2} \\ \vdots \\ R_{m}\end{array}\right)$, where $R_{1}, R_{2}, \ldots, R_{m}$ denote the rows of A. Define \mathcal{R}_{A}^{\perp} to be the set

$$
\mathcal{R}_{A}^{\perp}=\left\{w \in \mathbb{R}^{n} \mid R_{i} w=0 \text { for all } i=1,2, \ldots, m\right\}
$$

that is, \mathcal{R}_{A}^{\perp} is the set of vectors in \mathbb{R}^{n} which are orthogonal to the vectors $R_{1}^{T}, R_{2}^{T}, \ldots, R_{m}^{T}$ in \mathbb{R}^{n}.
(a) Prove that \mathcal{R}_{A}^{\perp} is a subspace of \mathbb{R}^{n}.
(b) Prove that $\mathcal{R}_{A}^{\perp}=\mathcal{N}_{A}$.
(c) Let v denote a vector in \mathbb{R}^{n}. Prove that if $v \in \mathcal{N}_{A}$ and $v^{T} \in \mathcal{R}_{A}$, then $v=0$.

