Assignment #18

Due on Monday, April 6, 2009

Read Section 5.2 on *Inverses* in Messer (pp. 184–190).

Background and Definitions

Given an $m \times n$ matrix, A,

The **null space of** A, denoted by \mathcal{N}_A , is the solution space of the homogeneous system

$$Ax = \mathbf{0}.$$

Thus, \mathcal{N}_A is a subspace of \mathbb{R}^n . The dimension of \mathcal{N}_A is called the **nullity** of A and is denoted by n(A).

The **column space of** A, denoted by C_A , is the span of the columns of A. It is therefore a subspace of \mathbb{R}^m . Its dimension is called the **rank** of A and is denoted by r(A).

The row space of A, denoted by \mathcal{R}_A , is the subspace of $\mathbb{M}(1, n)$ spanned by the rows of A. Its dimension is the same as the rank of A, r(A).

Do the following problems

1. Let
$$A = \begin{pmatrix} 1 & -4 & 1 \\ 0 & 3 & -1 \\ -3 & 0 & 1 \end{pmatrix}$$
. Compute the nullity and rank of A and verify that $n(A) + r(A) = 3.$

2. Let $A \in \mathbb{M}(m, n)$.

- (a) Prove that n(A) = 0 if and only if the columns of A are linearly independent.
- (b) Prove that r(A) = m if and only if the columns of A span \mathbb{R}^m .
- 3. Let $A \in \mathbb{M}(n, n)$. Prove that n(A) = 0 if and only if A invertible.

Math 60. Rumbos

4. In the text for this course, on page 188, Messer defines the rank of a matrix $A \in \mathbb{M}(m, n)$ to be the number of leading 1s in the reduced row-echelon form of the matrix. Prove that this definition is equivalent to the one given in this assignment; that is, prove that the number of leading 1s in the reduced row-echelon form A is the dimension of the column space of A.

5. Let
$$A \in \mathbb{M}(m, n)$$
 and write $A = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_m \end{pmatrix}$, where R_1, R_2, \dots, R_m denote the

rows of A. Define \mathcal{R}_A^{\perp} to be the set

$$\mathcal{R}_A^{\perp} = \{ w \in \mathbb{R}^n \mid R_i w = 0 \text{ for all } i = 1, 2, \dots, m \};$$

that is, \mathcal{R}_A^{\perp} is the set of vectors in \mathbb{R}^n which are orthogonal to the vectors $R_1^T, R_2^T, \ldots, R_m^T$ in \mathbb{R}^n .

- (a) Prove that \mathcal{R}_A^{\perp} is a subspace of \mathbb{R}^n .
- (b) Prove that $\mathcal{R}_A^{\perp} = \mathcal{N}_A$.
- (c) Let v denote a vector in \mathbb{R}^n . Prove that if $v \in \mathcal{N}_A$ and $v^T \in \mathcal{R}_A$, then $v = \mathbf{0}$.