Assignment \#2

Due on Friday, January 30, 2009
Read Section 1.5 on Euclidean Spaces in Messer (pp. 21-27).
Do the following problems

1. Consider the vectors v_{1}, v_{2} and v_{3} in \mathbb{R}^{3} given by

$$
v_{1}=\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right), \quad \text { and } \quad v_{3}=\left(\begin{array}{r}
0 \\
7 \\
-3
\end{array}\right)
$$

Show that $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
2. Let v_{1}, v_{2} and v_{3} be as in Problem 1 above. Use the result of Problem 1 to show that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

Note: You need to show that one span is a subset of the other, and conversely, the other is a subset of the one.
3. Let v_{1} and v_{2} be as in Problem 1 above. Show that $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ is a plane through the origin in \mathbb{R}^{3} and give the equation of the plane.
4. Let v_{1} and v_{2} be as in Problem 1 above. Find a vector in \mathbb{R}^{3} which is not in the span of v_{1} and v_{2}. Call the vector v_{4} and show that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{4}\right\}=\mathbb{R}^{3}
$$

5. Let v_{1} and v_{2} be as in Problem 1 above. Determine, if possible, a value of c for which the vector

$$
\left(\begin{array}{l}
4 \\
1 \\
c
\end{array}\right)
$$

lies in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. How many values of c with that property are there?

