Assignment \#21

Due on Monday, April 20, 2009
Read Section 6.1 on Linear Functions in Messer (pp. 212-216).
Read Section 6.3 on Matrix of a Linear Function in Messer (pp. 226-231).
Read Section 6.2 on Compositions and Inverses in Messer (pp. 218-223).
Do the following problems

1. Given two vector-valued functions, T and R, from \mathbb{R}^{n} to \mathbb{R}^{m}, we can define the sum, $T+R$, of T and R by

$$
(T+R)(v)=T(v)+R(v) \quad \text { for all } v \in \mathbb{R}^{n} .
$$

(a) Verify that, if both T and R are linear, then so is $T+R$.
(b) Explain how to define the scalar multiple $a T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of a vector valued function, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where a is a scalar and verify that if T is linear then so is $a T$.
2. The identity function, $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, is defined by

$$
I(v)=v \quad \text { for all } v \in \mathbb{R}^{n} .
$$

(a) Verify that $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation.
(b) Give the matrix representation of I relative to the standard basis in \mathbb{R}^{n}.
(c) Compute the null space, \mathcal{N}_{I}, and image, \mathcal{I}_{I}, of I.
3. The zero function, $O: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, is defined by

$$
O(v)=\mathbf{0} \quad \text { for all } v \in \mathbb{R}^{n} .
$$

(a) Verify that $O: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation.
(b) Give the matrix representation of O relative to the standard bases in \mathbb{R}^{n} and \mathbb{R}^{m}.
(c) Compute the null space, \mathcal{N}_{O}, and image, \mathcal{I}_{O}, of O.
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote a linear function and let $M_{T} \in \mathbb{M}(m, n)$ be its matrix representation with respect to the standard bases in \mathbb{R}^{n} and \mathbb{R}^{m}.
(a) Prove that the null space of T, \mathcal{N}_{T}, is the null space of the matrix M_{T}.
(b) Prove that the image of T, \mathcal{I}_{T}, is the span of the columns of the matrix M_{T}.
5. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a function, we can define the iterates, T^{k}, of T, where k is a positive integer, as follows:

$$
T^{2}=T \circ T
$$

That is, T is the composition of T with itself. Next, define

$$
T^{3}=T^{2} \circ T
$$

and so on. More precisely, once we have defined T^{k-1} for $k>1$, we can define T^{k} by

$$
T^{k}=T^{k-1} \circ T
$$

(a) Prove that if T is a linear function from \mathbb{R}^{n} to \mathbb{R}^{n}, then so are the functions T^{k} for $k=1,2, \ldots$
(b) Prove that T^{m} and T^{k} commute with each other; that is,

$$
T^{m} \circ T^{k}=T^{k} \circ T^{m}
$$

where k and m are positive integers.
(c) Given $v \in \mathbb{R}^{n}$, prove that the set

$$
\left\{v, T(v), T^{2}(v), \ldots, T^{n}(v)\right\}
$$

is linearly dependent.

