Assignment #22

Due on Friday, April 24, 2009

Read Section 6.1 on *Linear Functions* in Messer (pp. 212–216).

Read Section 6.3 on *Matrix of a Linear Function* in Messer (pp. 226–231).

Read Section 6.2 on *Compositions and Inverses* in Messer (pp. 218–223).

Do the following problems

- 1. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ denote a linear transformation and I denote the identity transformation from \mathbb{R}^n to \mathbb{R}^n . For scalars a and b, prove the following:
 - (a) T and T aI commute; that is,

$$T \circ (T - aI) = (T - aI) \circ T;$$

- (b) T aI and T bI commute.
- 2. Let $R_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote rotation around the origin in \mathbb{R}^2 in the counterclockwise sense trough and angle of θ . Show that R_{θ} is invertible and compute its inverse.
- 3. Let $R_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote rotation around the origin in \mathbb{R}^2 in the counterclockwise sense through an angle of θ , and R_{φ} denote a similar rotation through an angle of φ .
 - (a) Show that the composition $R_{\theta} \circ R_{\varphi}$ is also a rotation in \mathbb{R}^2 . What is the angle of rotation in for the composite rotation?
 - (b) Show that R_{θ} and R_{φ} commute.
- 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote reflection across the line y = x. Express T as a composition of rotations and a reflection across the x-axis.
- 5. Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ denote reflection across the line y = x and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ denote reflection across the y-axis.
 - (a) Show that $T_2 \circ T_1$ is a rotation in \mathbb{R}^2 . What is the angle of rotation?
 - (b) What do you get if you compose $T_1 \circ T_2$?