Assignment \#22

Due on Friday, April 24, 2009
Read Section 6.1 on Linear Functions in Messer (pp. 212-216).
Read Section 6.3 on Matrix of a Linear Function in Messer (pp. 226-231).
Read Section 6.2 on Compositions and Inverses in Messer (pp. 218-223).
Do the following problems

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote a linear transformation and I denote the identity transformation from \mathbb{R}^{n} to \mathbb{R}^{n}. For scalars a and b, prove the following:
(a) T and $T-a I$ commute; that is,

$$
T \circ(T-a I)=(T-a I) \circ T
$$

(b) $T-a I$ and $T-b I$ commute.
2. Let $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote rotation around the origin in \mathbb{R}^{2} in the counterclockwise sense trough and angle of θ. Show that R_{θ} is invertible and compute its inverse.
3. Let $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote rotation around the origin in \mathbb{R}^{2} in the counterclockwise sense through an angle of θ, and R_{φ} denote a similar rotation through an angle of φ.
(a) Show that the composition $R_{\theta} \circ R_{\varphi}$ is also a rotation in \mathbb{R}^{2}. What is the angle of rotation in for the composite rotation?
(b) Show that R_{θ} and R_{φ} commute.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the line $y=x$. Express T as a composition of rotations and a reflection across the x-axis.
5. Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the line $y=x$ and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the y-axis.
(a) Show that $T_{2} \circ T_{1}$ is a rotation in \mathbb{R}^{2}. What is the angle of rotation?
(b) What do you get if you compose $T_{1} \circ T_{2}$?

