Assignment \#23

Due on Monday, April 27, 2009
Read Section 6.1 on Linear Functions in Messer (pp. 212-216).
Read Section 6.3 on Matrix of a Linear Function in Messer (pp. 226-231).
Read Section 6.2 on Compositions and Inverses in Messer (pp. 218-223).
Read Section 7.2 on Definition of the Determinant in Messer (pp. 273-276).

Background and Definitions

Orthogonal Transformation. An $n \times n$ matrix, A, is said to be orthogonal if

$$
A^{T} A=I
$$

where I denotes the identity matrix in $\mathbb{M}(n, n)$.
A linear transformation, $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be orthogonal, if its matrix representation with respect to the standard basis in \mathbb{R}^{n}, M_{T}, is an orthogonal matrix.

Determinant of a 2×2 matrix. The determinant of the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is define to be

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Geometrically, the absolute value of the determinant of A gives the area of the parallelogram determined by the columns of A.

Do the following problems

1. Let R_{1} and R_{2} denote two orthogonal transformations from \mathbb{R}^{n} to \mathbb{R}^{n}. Prove that the composition $R_{2} \circ R_{1}$ is also an orthogonal transformation.
2. Let T_{1} and T_{2} denote two linear transformations from \mathbb{R}^{n} to \mathbb{R}^{n}. Prove that if the composition $T_{2} \circ T_{1}$ is singular, then either T_{1} or T_{2} is singular.
3. Consider the following 2×2 elementary matrices:
E_{1} is obtained from the 2×2 identity matrix, I, by performing the elementary row operation $R_{1} \leftrightarrow R_{2}$;
E_{2} is obtained from the 2×2 identity matrix, I, by performing the elementary row operation $a R_{1}+R_{2} \rightarrow R_{2}$, for some scalar a; and
E_{3} is obtained from the 2×2 identity matrix, I, by performing the elementary row operation $b R_{2} \rightarrow R_{2}$, for a nonzero scalar b.

Compute the determinants of the matrices E_{1}, E_{2} and E_{3}.
4. Let E_{1}, E_{2} and E_{3} be the elementary matrices defined in Problem 3 and let B denote any 2×2 matrix. Verify that

$$
\operatorname{det}\left(E_{i} B\right)=\operatorname{det}\left(E_{i}\right) \cdot \operatorname{det}(B) \quad \text { for } i=1,2,3
$$

5. Let A denote any 2×2 matrix.

Prove that A is invertible if and only if $\operatorname{det}(A) \neq 0$.
If $\operatorname{det}(A) \neq 0$, give a formula for computing A^{-1} in terms of $\operatorname{det}(A)$ and the entries of A.

