Assignment #3

Due on Wednesday, February 4, 2009

Read Section 3.3 on *Linear Independence* in Messer (pp. 103–109).

Do the following problems

1. Consider the vectors v_1 , v_2 and v_3 in \mathbb{R}^3 given by

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} \quad \text{and} \quad v_3 = \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix}.$$

- (a) If possible, write the vector v_3 as a linear combination of v_1 and v_2 .
- (b) Determine whether the set $\{v_1, v_2, v_3\}$ spans \mathbb{R}^3 .
- 2. Let v_1 , v_2 and v_3 be as given in the previous problem. Find a linearly independent subset of $\{v_1, v_2, v_3\}$ which spans span $\{v_1, v_2, v_3\}$.
- 3. Show that the set $\left\{ \begin{pmatrix} 2\\4\\2 \end{pmatrix}, \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \right\}$ is a linearly independent subset of \mathbb{R}^3 .
- 4. Determine whether the set $\left\{ \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix} \right\}$ is a linearly independent subset of \mathbb{R}^4 .
- 5. Show that $\left\{ \begin{pmatrix} 2\\2\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3\\-2 \end{pmatrix} \right\}$ is a linearly dependent subset

of \mathbb{R}^4 . Write one of the vectors in the set as a linear combination of the other three. Show that the remaining three vectors form a linearly independent subset of \mathbb{R}^4 .