Assignment \#3

Due on Wednesday, February 4, 2009
Read Section 3.3 on Linear Independence in Messer (pp. 103-109).
Do the following problems

1. Consider the vectors v_{1}, v_{2} and v_{3} in \mathbb{R}^{3} given by

$$
v_{1}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right) \quad \text { and } \quad v_{3}=\left(\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right)
$$

(a) If possible, write the vector v_{3} as a linear combination of v_{1} and v_{2}.
(b) Determine whether the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans \mathbb{R}^{3}.
2. Let v_{1}, v_{2} and v_{3} be as given in the previous problem. Find a linearly independent subset of $\left\{v_{1}, v_{2}, v_{3}\right\}$ which spans $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
3. Show that the set $\left\{\left(\begin{array}{l}2 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{3}.
4. Determine whether the set $\left\{\left(\begin{array}{r}2 \\ -1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{r}0 \\ 2 \\ -1 \\ -2\end{array}\right),\left(\begin{array}{r}2 \\ 0 \\ -1 \\ 0\end{array}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{4}.
5. Show that $\left\{\left(\begin{array}{l}2 \\ 2 \\ 6 \\ 0\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 3 \\ -2\end{array}\right)\right\}$ is a linearly dependent subset of \mathbb{R}^{4}. Write one of the vectors in the set as a linear combination of the other three. Show that the remaining three vectors form a linearly independent subset of \mathbb{R}^{4}.

