Assignment #4

Due on Friday, February 6, 2009

Read Section 1.8 on *Subspaces* in Messer (pp. 39–44).

Background and Definitions

(Definition of Subspace of \mathbb{R}^n). A non-empty subset, W, of Euclidean space, \mathbb{R}^n , is said to be a **subspace** of \mathbb{R}^n iff

- (i) $v, w \in W$ implies that $v + w \in W$ (closure under vector addition); and
- (ii) $t \in \mathbb{R}$ and $v \in W$ implies that $tv \in W$ (closure under scalar multiplication).

Do the following problems

- 1. Let $S = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x \ge 0, y \ge 0 \right\}$. Show that S is closed under vector addition in \mathbb{R}^2 . Explain why S is not a subspace of \mathbb{R}^2 .
- 2. Let $a_1, a_2, b_1, b_2, c_1, c_2$ be real constants. Let W be the solution set of the homogeneous system

$$\begin{cases} a_1x_1 + b_1x_2 + c_1x_3 = 0\\ a_2x_1 + b_2x_2 + c_2x_3 = 0. \end{cases}$$

Prove that W is a subspace of \mathbb{R}^3 .

- 3. Let $L = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = 2x + 1 \right\}$. Determine whether or not L is a subspace of \mathbb{R}^2 .
- 4. Let W be a subspace of \mathbb{R}^n . Use the definition of subspace to prove the following statements.
 - (a) If $v \in W$, then W must also contain the additive inverse of v.
 - (b) W contains the zero vector.
- 5. Given two subsets A and B of \mathbb{R}^n , the **intersection** of A and B, denoted by $A \cap B$, is the set which contains all vectors that are both in A and B; in symbols,

$$A \cap B = \{ v \in \mathbb{R}^n \mid v \in A \text{ and } v \in B \}.$$

- (a) Prove that $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
- (b) Prove that if W_1 and W_2 are two subspaces of \mathbb{R}^n , then the intersection $W_1 \cap W_2$ is a subspace of \mathbb{R}^n which is contained in both W_1 and W_2 .