Assignment #5

Due on Monday, February 9, 2009

Read Section 1.8 on Subspaces in Messer (pp. 39–44).

Read Section 3.2 on *Span* in Messer (pp. 97–102).

Background and Definitions

(Spans). For any subset S of \mathbb{R}^n , span(S) is the smallest subspace of \mathbb{R}^n which contains S; that is,

- (i) span(S) is a subspace of \mathbb{R}^n ;
- (ii) $S \subseteq \operatorname{span}(S)$; and
- (iii) for any subspace, W, of \mathbb{R}^n such that $S \subseteq W$, span $(S) \subseteq W$.

Do the following problems

- 1. Let S_1 and S_2 denote two subsets of \mathbb{R}^n such that $S_1 \subseteq S_2$.
 - (a) Prove that $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.
 - (b) Prove that if S_1 spans \mathbb{R}^n , then $\operatorname{span}(S_2) = \mathbb{R}^n$.

2. Let $S = \{v_1, v_2, \dots, v_k\}$, where be v_1, v_2, \dots, v_k are vectors in \mathbb{R}^n . The symbol $S \setminus \{v_j\}$ denotes the set S with v_j removed from the set, for $j \in \{1, 2, \dots, k\}$. Suppose that $v_j \in \text{span}(S \setminus \{v_j\})$ for some j in $\{1, 2, \dots, k\}$. Prove that

$$\operatorname{span}(S \setminus \{v_j\}) = \operatorname{span}(S).$$

- 3. Suppose that W is a subspace of \mathbb{R}^n and that $v_1, v_2, \ldots, v_k \in W$. Prove that $\operatorname{span}\{v_1, v_2, \ldots, v_k\} \subseteq W$.
- 4. Let W be a subspace of \mathbb{R}^n . Prove that if the set $\{v, w\}$ spans W, then the set $\{v, v + w\}$ also spans W.
- 5. Let W be the solution set of the homogeneous system

$$\begin{cases} -x_1 + 2x_2 - 3x_3 &= 0\\ 2x_1 - x_2 + 4x_3 &= 0. \end{cases}$$

Solve the system to determine W, and find a set, S, of vectors in \mathbb{R}^3 such that

 $W = \operatorname{span}(S).$

Deduce, therefore, that W is a subspace of \mathbb{R}^3 .