Assignment \#6

Due on Monday, February 16, 2009
Read Section 1.8 on Subspaces in Messer (pp. 39-44).
Read Section 3.2 on Span in Messer (pp. 97-102).
Read Section 3.3 on Linear Independence in Messer (pp. 103-109).

Background and Definitions

(Solution Space of Homogeneous Linear Systems). The set of solutions of the homogeneous system of linear equations

$$
\left\{\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =0 \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =0 \\
\vdots & =\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =0
\end{array}\right.
$$

where $a_{1 j}$, for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$, are scalars, is a subspace of \mathbb{R}^{n}. We call it the solution space of the system (1).

Do the following problems

1. Let W denote the solution space of the equation

$$
3 x_{1}+8 x_{2}+2 x_{3}-x_{4}+x_{5}=0
$$

Find a linearly independent subset, S, of \mathbb{R}^{5} such that $W=\operatorname{span}(S)$.
2. Let W denote the solution space of the system

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}-x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{array}\right.
$$

Find a linearly independent subset, S, of \mathbb{R}^{3} such that $W=\operatorname{span}(S)$.
3. In the following system, find the value or values of λ for which the system has nontrivial solutions. In each case, give a a linearly independent subset of \mathbb{R}^{2} which generates the solution space.

$$
\left\{\begin{array}{r}
(\lambda-3) x+y=0 \\
x+(\lambda-3) y=0
\end{array}\right.
$$

4. Let $v \in \mathbb{R}^{n}$ and S be a subset of \mathbb{R}^{n}.
(a) Show that the set $\{v\}$ is linearly independent if and only if $v \neq \mathbf{0}$.
(b) Show that if $\mathbf{0} \in S$, then S is linearly dependent.
5. Let v_{1} and v_{2} be vectors in \mathbb{R}^{n}, and let c be a scalar.
(a) Show that $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is also linearly independent.
(b) Show that

$$
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)=\operatorname{span}\left(\left\{v_{1}, c v_{1}+v_{2}\right\}\right)
$$

