Assignment #6

Due on Monday, February 16, 2009

Read Section 1.8 on *Subspaces* in Messer (pp. 39–44).

Read Section 3.2 on *Span* in Messer (pp. 97–102).

Read Section 3.3 on *Linear Independence* in Messer (pp. 103–109).

Background and Definitions

(Solution Space of Homogeneous Linear Systems). The set of solutions of the homogeneous system of linear equations

$$\begin{array}{rcl}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= 0 \\
 \vdots &= \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= 0,
\end{array}$$
(1)

where a_{1j} , for i = 1, 2, ..., m and j = 1, 2, ..., n, are scalars, is a subspace of \mathbb{R}^n . We call it the **solution space** of the system (1).

Do the following problems

1. Let W denote the solution space of the equation

$$3x_1 + 8x_2 + 2x_3 - x_4 + x_5 = 0$$

Find a linearly independent subset, S, of \mathbb{R}^5 such that $W = \operatorname{span}(S)$.

2. Let W denote the solution space of the system

$$\begin{cases} x_1 - 2x_2 - x_3 = 0\\ 2x_1 - 3x_2 + x_3 = 0. \end{cases}$$

Find a linearly independent subset, S, of \mathbb{R}^3 such that $W = \operatorname{span}(S)$.

3. In the following system, find the value or values of λ for which the system has nontrivial solutions. In each case, give a a linearly independent subset of \mathbb{R}^2 which generates the solution space.

$$\left\{ \begin{array}{rrrr} (\lambda-3)x+&y&=&0\\ x+(\lambda-3)y&=&0 \end{array} \right.$$

- 4. Let $v \in \mathbb{R}^n$ and S be a subset of \mathbb{R}^n .
 - (a) Show that the set $\{v\}$ is linearly independent if and only if $v \neq 0$.
 - (b) Show that if $\mathbf{0} \in S$, then S is linearly dependent.
- 5. Let v_1 and v_2 be vectors in \mathbb{R}^n , and let c be a scalar.
 - (a) Show that $\{v_1, v_2\}$ is linearly independent if and only if $\{v_1, cv_1 + v_2\}$ is also linearly independent.
 - (b) Show that

$$\operatorname{span}(\{v_1, v_2\}) = \operatorname{span}(\{v_1, cv_1 + v_2\}).$$