Assignment \#8

Due on Friday, February 20, 2009
Read Section 1.8 on Subspaces in Messer (pp. 39-44).

Do the following problems

1. Given two subsets A and B of \mathbb{R}^{n}, the union of A and B, denoted by $A \cup B$, is the set which contains all vectors that are in either A or B; in symbols,

$$
A \cup B=\left\{v \in \mathbb{R}^{n} \mid v \in A \text { or } v \in B\right\} .
$$

(a) Prove that $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
(b) Suppose that W_{1} and W_{2} are two subspaces of \mathbb{R}^{2}. Give an example that shows that $W_{1} \cup W_{2}$ is not necessarily a subspace of \mathbb{R}^{2}.
2. Given two subsets A and B of \mathbb{R}^{n}, the sum of A and B, denoted by $A+B$, is the set which contains all vectors sums, $v+w$, such that $v \in A$ and $v \in B$; in symbols,

$$
A+B=\left\{u \in \mathbb{R}^{n} \mid u=v+w, \text { where } v \in A \text { and } v \in B\right\} .
$$

Prove that if W_{1} and W_{2} are two subspaces of \mathbb{R}^{n}, then $W_{1}+W_{2}$ is also a subspace of \mathbb{R}^{n}.
3. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n} and define $W_{1}+W_{2}$ as in the previous problem. Prove that $W_{1} \cap W_{2}, W_{1}$ and W_{2} are subspaces of $W_{1}+W_{2}$.
4. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n} and define $W_{1}+W_{2}$ as in Problem 2 above. Suppose that $W_{1}=\operatorname{span}\left(S_{1}\right)$ and $W_{2}=\operatorname{span}\left(S_{2}\right)$, where $S_{1} \subseteq W_{1}$ and $S_{2} \subseteq W_{2}$. Prove that

$$
W_{1}+W_{2}=\operatorname{span}\left(S_{1} \cup S_{2}\right)
$$

5. Let S_{1} and S_{2} be two linearly independent subsets of \mathbb{R}^{n}. When can we say that $S_{1} \cup S_{2}$ is linearly independent? Justify your answer.
