Review Problems for Exam 1

1. Consider the set $B=\left\{\binom{1}{1},\binom{-1}{1}\right\}$.
(a) Show that B is a basis for \mathbb{R}^{2}.
(b) Give the coordinates of the vector $v=\binom{1}{0}$ relative to B. Interpret your result geometrically.
2. Give a basis for the span of the following set of vectors in \mathbb{R}^{4}

$$
\left\{\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-3 \\
6 \\
-3
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-4 \\
1
\end{array}\right)\right\} .
$$

3. Find a basis for the solution space of the system

$$
\left\{\begin{aligned}
x_{1}-x_{2}+x_{3} & -x_{4}=0 \\
2 x_{1}-x_{2} & -2 x_{4}=0 \\
-x_{1}+x_{3} & +x_{4}=0
\end{aligned}\right.
$$

and compute its dimension.
4. Prove that any set of four vectors in \mathbb{R}^{3} must be linearly dependent.
5. Show that if the set $\left\{v_{1}, v_{2}\right\}$ is a linearly independent subset of \mathbb{R}^{n}, then so is the set $\left\{v_{1}, c v_{1}+v_{2}\right\}$, where c is a scalar, and, conversely, if $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent, then so is $\left\{v_{1}, v_{2}\right\}$. Show also that $\operatorname{span}\left\{v_{1}, v_{2}\right\}=$ $\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$.
6. Let J and H be planes in \mathbb{R}^{3} given by
$J=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, 2 x+3 y-6 z=0\right\} \quad$ and $\quad H=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, x-2 y+z=0\right\}$.
(a) Give bases for J and H and compute their dimensions.
(b) Give a basis for the subspace $J \cap H$ and compute $\operatorname{dim}(J \cap H)$.
7. Let W be a subspace of \mathbb{R}^{n}.
(a) Prove that if $v \in W$ and $v \neq \mathbf{0}$, then $r v=s v$ implies that $r=s$, where r and s are scalars.
(b) Prove that if W has more than one element, then W has infinitely many elements.
8. Let W be a subspace of \mathbb{R}^{n} and S_{1} and S_{2} be subsets of W.
(a) Show that $\operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.
(b) Give an example in which $\operatorname{span}\left(S_{1} \cap S_{2}\right) \neq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.
(c) Show that if $S_{1} \subseteq S_{2}$ and S_{2} is linearly independent, then S_{1} is also linearly independent.
(d) Show that if $S_{1} \subseteq S_{2}$ and S_{1} is linearly dependent, then S_{2} is also linearly dependent.
9. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n}. We write $W_{1} \oplus W_{2}$ for the subspace $W_{1}+W_{2}$ for the special case in which $V=W_{1} \cap W_{2}=\{\mathbf{0}\}$. Show that every vector $v \in W_{1} \oplus W_{2}$ can be written in the form $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, in one and only one way; that is, if $v=u_{1}+u_{2}$, where $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$, then $u_{1}=v_{1}$ and $u_{2}=v_{2}$.
10. Let $v \in \mathbb{R}^{n}$ and define $W=\left\{w \in \mathbb{R}^{n} \mid\langle w, v\rangle=0\right\}$.
(a) Prove that W is a subspace of \mathbb{R}^{n}.
(b) Suppose that $v \neq \mathbf{0}$ and compute $\operatorname{dim}(W)$.

