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Solutions to Review Problems for Exam 1

1. Consider the set B = {( D , (_11) } )

(a)

Show that B is a basis for R2.

Proof: Given that dim(R?) = 2 and that B contains two vectors, to prove
that B is a basis for R?, it suffices to prove that B is linearly independent.
Thus, consider the vector equation

() ()-0)

which is equivalent to the system

fate s )

c1+ ¢y

The system in (2) can be solved to yield the unique solution ¢; = ¢3 = 0.
Hence, the vector equation in (1) has only the trivial solution, and therefore
B is linearly independent. [

. : 1 :
Give the coordinates of the vector v = < ) relative to B. Interpret your

0
result geometrically.

Solution: We look for scalars, ¢; and ¢y, such that

1 -1 1
(a0
This is equivalent to solving the system

Cl —C = 1
c1+c = 0.

To solve this system, we may reduce the corresponding augmented
matrix,

to
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. 1 .
We therefore get that the coordinate vector of (0) relative to B

)], = (4%)

Denote the vectors in B by v; and vy, respectively and in that
1
0 by v. Figure 1 shows the

vector v as the sum of the vectors %vl and —%Ug.

order, and denote the vector

V2 o

Figure 1: Coordinates relative to B

2. Give a basis for the span of the following set of vectors in R*

1 -2 1 1
-1 0 -3 1
11’ 3]’ 6]1°|—4
-1 0 -3 1

Solution: Denote the vectors in the set

1 -2 1
-1 0 -3

1]’ 31’ 6 |—4
-1 0 -3

—_ =

—_



Math 60. Rumbos Spring 2009 3

by vy, v9, v3 and vy, respectively, we look for a linear vector relation
of the form
C1V1 + CcUy + C3U3 + cyvy = 0. (4)

This leads to the system

01—202—|—63—|—C4 =0
—c1 —3c3+ca = 0 (5)
c1 + 3co + 6¢3 — 4ey 0
—C1 — 303 + ¢4 = 0.
The augmented matrix of this system is:

Ry 1 =2 1 1 ] 0

R, -1 0 -3 1] 0

Rs 1 3 6 —4 |0

R, -1 0 -3 1 |0

We can reduce this matrix to

1 0 3 —-1]0
0 1 1 —-11]0
0 0 0 01]0]"
0 0 0 010

which is in reduced row—echelon form. We therefore get that the
system in (5) is equivalent to the system

{01+303—C4 =0 (6)

Co+cCc3—cCcqy = 0.

Solving for the leading variables in (6) yields the solutions

cg = 3t+s

co = t+s

C3 = —t (7)
Cy = S,

where ¢ and s are arbitrary parameters. Taking ¢ = 1 and s = 0 in
(7) yields from (4) the linear relation

3v1 +v9 —v3 =0,

which shows that v = —3v; — v9; that is, v3 € span{vy, va}.
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Similarly, taking t = 0 and s = 1 in (7) yields
V1 + V2 + Uy = O,

which shows that vy = —v; — ve; that is, vy € span{vy, vs}.
We then have that both v3 and vy are in the span of {v;,v3}. Conse-
quently,

{v1,v9,v3,v4} C span{vy, va},

from which we get that

Span{“l? V2, U3, U4} g Span{vla U2}7

since span{vy, va, v3,v4} is the smallest subspace of R® which contains
{v1,v9,v3,v4}. Combining this with

Span{”l? UQ} g Span{vla V2, U3, U4}u
we conclude that
span{vy, vo} = span{vy, vg, V3, U4 };

that is, {vy, vo} spans span{vy, va, v3, V4 }.

To see that {vy,ve} is linearly independent, observe that v; and v
are not multiples of each other. We therefore conclude that {vy,vs}
is a basis for span{vy, vo, v3, v4}. O

3. Find a basis for the solution space of the system

r|— To + T3 — T4 = 0
21‘1 — T2 - 21’4 =0
—I1 + T3 + x4 = 0,

and compute its dimension.

Solution: We first find the solution space, W, of the system. In
order to do this, we reduce the augmented matrix of this system,

Ry 1 -1 1 =110
R, 2 -1 0 -2 | 0],
Ry -1 0 1 110
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to its reduced row—echelon form:

1 0 -1 010
0 1 -2 010
0 0 0 11]0

Consequently, the system in (8) is equivalent to the system

ry — X3 =0
To — 2.133 =0 (9)
Ty = 0.

Solving for the leading variables in the system in (9) we obtain the

solutions
r1 = t
To = 2t
r3 = t
Ty = 0,

where t is an arbitrary parameter. I then follows that the solution
space of system (9) is

1
W = span i
0
Hence
1
2
1
0
is a basis for W and therefore dim(WW') = 1. O

4. Prove that any set of four vectors in R?® must be linearly dependent.

Proof: Let vy , vo, v3 and v, denote four vectors in R3 and write

a1 12 a13 Q14
U1 = 21 ), V2= a2 |, V3= @23 and vy = Q24
a31 32 33 34

Consider the vector equation

C1U1 + CoUy + C3V3 + CpUy, = 0.
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This equation translate into the homogeneous system

ai1C1 + a12Co + a13C3 -+ A14C4 — 0
A21C1 + A22Cy + Q233 + ag4cy = 0 (11)
asi1C1 + asaCy + aszcs +agscs = 0,

of 3 linear equations in 4 unknowns. It then follows from the Fundamental
Theorem for homogeneous linear systems that system (11) has infinitely many
solutions. Consequently, the vector equation in (10) has a nontrivial solution,
and therefore the set {vy, vy, v3,v4} is linearly dependent. O

5. Show that if the set {vy,v2} is a linearly independent subset of R", then so
is the set {v;,cv; + vo}, where ¢ is a scalar, and, conversely, if {vq,cv; + v}
is linearly independent, then so is {vj,v2}. Show also that span{vi,vy} =
span{vy, cu; + va}.

(a)

First we prove that {vy, v} is a linearly independent subset of R™, then so
is the set {vy, cv; + va},

Proof: Assume that {vy,v9} is a linearly independent and consider the
vector equation
c1v1 + CQ(CUl + ’02) = 0. (12)

Applying the distributive and associative properties, the equation in (12)
turns into
(c1 4 cca)vy + covg = 0. (13)

It follows from (13) and the linear independence of {vy,vo} that

{01+CCQ =0 (14)

CQZO.

The system in (14) has only the trivial solution: ¢, = ¢; = 0. Hence, the
vector equation in (12) has only the trivial solution and therefore the set
{v1, cv1 + v} is linearly independent. O

Next, we prove the converse of the statement in (a): If {vq,cv; 4+ vo} is
linearly independent, then {vy, v} is a linearly independent.

Proof: Assume that {v;,cv; + v} is a linearly independent and consider
the vector equation
ci1v1 + covg = 0. (15)
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Adding 0 = ccyvy — ceovy to the left—hand side of the equation in (15) and
applying the distributive and associative properties we get

(Cl — CCQ)"U;[ + CQ(CUl + UQ) =0. (16)

It follows from (16) and the linear independence of {vy, cv; + v} that

{Cl—CCQ =0 (17)

02:0.

The system in (17) has only the trivial solution: ¢; = ¢; = 0. Hence, the
vector equation in (15) has only the trivial solution and therefore the set
{v1,v9} is linearly independent. O

We prove that that span{v,vs} = span{vy, cv; + va}.

Proof: Let W = span{vy,v}. Then, W is a subspace which contains v,
and vy and all their linear combinations; in particular, cv; + v9 € W. We
then have that

{v1,cv1 + v} CW.

It then follows that
span{vy, cv; + vo} C W, (18)

since span{vy,cv; + vy} is the smallest subspace of R" which contains
{v1,cv1 + v2} . Ont the other hand, for any u € W there exist scalars
c1 and ¢ such that

U = C1VU1 + CoVa.

Consequently,
U = C1V1 + CoUy 4 CCoU1 — CCoVy
= (¢ — cco)vy + ca(cvy + vy),

which shows that u € span{vy, cv; + vq}; thus,
u €W = u € span{vy, cv; + va},

or
W C span{vy, cv; + va}.

Combining this with (18) yields that

W = span{vy, cv; + vq}.
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6. Let J and H be planes in R? given by

x x
J = Y 204+ 3y —62=0 and H = Yy r—=2y+2=0
z z

(a) Give bases for J and H and compute their dimensions.

Solution: To find a basis for J, we solve the equation

20+3y+2=0

3 0
to get the solution space J = span 01,12 . Thus, the
1 1
set
3 0
01,13
1 1
is a basis for J and so dim(J) = 2.
Similarly, for H, we solve
r—2y+z=0
and obtain that
2 1
11,1 O
0 -1
is a basis for H; thus, dim(H) = 2. O
(b) Give a basis for the subspace J N H and compute dim(J N H).
x
Solution: Vectors | y | in the intersection of J and H if they
z

are solutions to the system of equations

(19)

20 +3y—62 = 0
rT—2y+z = 0.

Thus, to find J N H, we may elementary row operations on the
augmented matrix

R 2 3 —6 | 0
R, 1 -2 1] 0

8
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to obtain the reduced matrix

1 0 =9/7 | 0

0 1 =8/7 | 0)°
Thus, the system in (19) is equivalent to

r— 22 =0
7
{ y—32 = 0, 20)

Solving for the leading variables in system (20) and setting z = 7t,
where ¢ is an arbitrary parameter, wee obtain that

9
J N H = span 8
7
Thus, the set
9
8
7
is a basis for J N H and, therefore, dim(J N H) = 1. O

7. Let W be a subspace of R"™.

(a) Prove that if v € W and v # 0, then rv = sv implies that r = s, where r
and s are scalars.

Proof: Suppose that v € W, where W is a subspace of R", and that v £ 0.
Suppose also that
TV = SvU (21)

for some scalars r and s. Add —sv on both sides of the vector equation in
(21) and apply the distributive property to obtain

(r—s)v=0. (22)
Taking the Euclidean inner product with v of both sides of (22) yields
(r = s){v,v) =0, (23)

where we have used the bi-linearity of the inner product. It then follows
form (23), the positive definiteness of the inner product, and the assump-
tion that v # 0, that

r—s=20

and therefore » = s, which was to be shown. n
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(b) Prove that if W has more than one element, then W has infinitely many
elements.

Proof: Since W has at least two elements, there has to be a vector, v, in W
such that v # 0. Now, for any ¢t € R, tv € W because W is closed under
scalar multiplication. By part (a), tjv # tyv for any t; # t5. Consequently,
W contains infinitely many vectors. m

8. Let W be a subspace of R" and S; and Sy be subsets of W.
(a) Show that span(S; N .Se) C span(.Sy) N span(Sy).
Proof: First observe that S; NSy C 57 and S; N Sy C 95. Consequently,
span(S; NSy) Cspan(S;) and  span(S; N Sy) C span(Ss).
It then follows that
span(S; N Sy) C span(.Sy) N span(.Sz),
which was to be shown. O

(b) Give an example in which span(S; N Ss) # span(S;) N span(Ss).

Solution: Let S| = {((1))} and Sy = {(_é> } Then, S; N

Sy = ) so that span(S; N S2) = {0}, where 0 denotes the zero

vector in R?.

On the other hand,
T E R}
T E R} .

span(S;) = {(g) € R
T € ]R} # {0}.

and

sy = { (2) e

span(S;) N span(Ss) = {(g) € R?

Hence,




Math 60. Rumbos Spring 2009 11

(c)

Show that if S; C S5 and Ss is linearly independent, then S is also linearly
independent.

Proof: Suppose that S; C S5 and S; is linearly independent, and that
C1,Ca, ..., C, solve the vector equation

c1v1 + Covg + -+ cpup = 0, (24)

where vy, vs, ..., v are vectors in Sy. Since we are assuming that S; C S5,
the vectors vy, vs,..., v, are also in S, which is assumed to be linearly
independent; consequently,

cpo=cp=---=c¢,=0.
Thus, we have shown that for any finite set of vectors, vy, vs,..., v, in
S1, the vector equation in (24) has only the trivial solution. Hence, S; is
linearly independent. O]

Show that if S; C S5 and 57 is linearly dependent, then S is also linearly
dependent.

Proof: Suppose that S; C Sy and S; is linearly dependent. Then, there
exist vectors vy, ve, ..., v are vectors in Sy such that the equation

c1v1 + covg + -+ cpup = 0, (25)

has a nontrivial solution. Since we are assuming that S; C Sy, the vectors
U1, Vg, ...,V are also in Sy. This proves that Sy is linearly dependent. [J

9. Let W7 and W5 be two subspaces of R™. We write W; & W, for the subspace
Wy + W, for the special case in which V' = W; N W, = {0}. Show that every
vector v € Wi @ W, can be written in the form v = v; + v9, where v; € W and
vo € Wy, in one and only one way; that is, if v = u; + ug, where uy € W; and
uy € W, then uqy = v1 and uy = vs.

Proof: Suppose that W; and W5 are two subspaces of R™ which have only the
zero vector in common; that is, Wi N W, = {0}. Let v be any in € W; + W,
Then, v = v; 4+ v9, where v; € Wi and vy € Ws. Suppose that v can also be
written as v = u; + uq, where u; € Wy and uy € Wy. Then,

U1 + V2 = Up + Uo,
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from which we get that
U1 — Uy = V2 — Uy, (26)

where v; — u; € Wy and vy — uy € Ws since Wy and Wy are subspaces of R”™.
It also follows from (26) that v; —wu; € Wy, Thus, vy —u; € Wy N W, = {0},
which implies that
V1 — Uy = 0,
or
V1 = Uq.

Similarly, we get that ve = us. O]
10. Let v € R™ and define W = {w € R™ | (w,v) = 0}.
(a) Prove that W is a subspace of R".

Proof: First, observe that W # () because (0,v) = 0 and therefore 0 € W
and so W is nonempty.

Next, we show that W is closed under addition and scalar multiplication.

To see that W is closed under scalar multiplication, observe that, by the
bi-linearity property of the inner product, if w € W, then

((v,tw) = t(v,w) =t-0=0

for all t € R.
To show that W is closed under vector addition, let w; and wy be two
vectors in W. Then, applying the bi-linearity property of the inner product
again,

(w1 + wa,v) = (wy,v) + (wa,v) =0+ 0 = 0;
hence, wy + wy € W. O

(b) Suppose that v # 0 and compute dim(W).

Solution: Let B = {wj,wy,...w} be a basis for W. Then,
dim(W) = k and we would like to determine what k is.
First note that v & span(B). For, suppose that v € span(B) = W,
then

(v,v) = 0.

Thus, by the positive definiteness of the Euclidean inner product,
it follows that v = 0, but we are assuming that v # 0. Conse-
quently, the set

BU{v} = {wy,wa, ... wg,v}
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is linearly independent. We claim that BU {v} also spans R". To
see why this is so, let v € R" be any vector in R", and let

t= —<u’v2>.
o]

Write
u=tv+ (u—tv),

and observe that uw — tv € W. To see why this is so, compute
<u — tv, U> = <U, U) - t<’U, U)

= (u,v) —t]lv]?

— luw _<U>U> e

= (u,v) — (u,v)

= 0.
Thus, u—tv € W. It then follows that there exist scalars ¢y, ca, ..., c
such that
u —tv = cqwy + cowy + - -+ 4 CLWg.
Thus,

U = Qw1 + cows + -+ - + crwy + to,

which shows that u € span(BU{v}). Consequently, BU{v} spans
R™. Therefore, since BU{v} is also linearly independent, it forms
a basis for R". We then have that BU{v} must have n vectors in
it, since dim(R™) = n; that is,

k+1=n,
from which we get that

dim(W) =n — 1.



