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Solutions to Review Problems for Exam 1

1. Consider the set B =

{(
1
1

)
,

(
−1

1

)}
.

(a) Show that B is a basis for R2.

Proof: Given that dim(R2) = 2 and that B contains two vectors, to prove
that B is a basis for R2, it suffices to prove that B is linearly independent.
Thus, consider the vector equation

c1

(
1
1

)
+ c2

(
−1

1

)
=

(
0
0

)
, (1)

which is equivalent to the system{
c1 − c2 = 0
c1 + c2 = 0.

(2)

The system in (2) can be solved to yield the unique solution c1 = c2 = 0.
Hence, the vector equation in (1) has only the trivial solution, and therefore
B is linearly independent.

(b) Give the coordinates of the vector v =

(
1
0

)
relative to B. Interpret your

result geometrically.

Solution: We look for scalars, c1 and c2, such that

c1

(
1
1

)
+ c2

(
−1

1

)
=

(
1
0

)
. (3)

This is equivalent to solving the system{
c1 − c2 = 1
c1 + c2 = 0.

To solve this system, we may reduce the corresponding augmented
matrix, (

1 −1 | 1
1 1 | 0

)
,

to (
1 0 | 1/2
0 1 | −1/2

)
.
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We therefore get that the coordinate vector of

(
1
0

)
relative to B

is [(
1
0

)]
B

=

(
1/2
−1/2

)
.

Denote the vectors in B by v1 and v2, respectively and in that

order, and denote the vector

(
1
0

)
by v. Figure 1 shows the

vector v as the sum of the vectors 1
2
v1 and −1

2
v2.
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Figure 1: Coordinates relative to B

�

2. Give a basis for the span of the following set of vectors in R4


1
−1

1
−1

 ,


−2

0
3
0

 ,


1
−3

6
−3

 ,


1
1
−4

1


 .

Solution: Denote the vectors in the set


1
−1

1
−1

 ,


−2

0
3
0

 ,


1
−3

6
−3

 ,


1
1
−4

1



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by v1, v2, v3 and v4, respectively, we look for a linear vector relation
of the form

c1v1 + c2v2 + c3v3 + c4v4 = 0. (4)

This leads to the system
c1 − 2c2 + c3 + c4 = 0
−c1 − 3c3 + c4 = 0
c1 + 3c2 + 6c3 − 4c4 = 0
−c1 − 3c3 + c4 = 0.

(5)

The augmented matrix of this system is:

R1

R2

R3

R4


1 −2 1 1 | 0
−1 0 −3 1 | 0

1 3 6 −4 | 0
−1 0 −3 1 | 0

 .

We can reduce this matrix to
1 0 3 −1 | 0
0 1 1 −1 | 0
0 0 0 0 | 0
0 0 0 0 | 0

 ,

which is in reduced row–echelon form. We therefore get that the
system in (5) is equivalent to the system{

c1 + 3c3 − c4 = 0
c2 + c3 − c4 = 0.

(6)

Solving for the leading variables in (6) yields the solutions
c1 = 3t + s
c2 = t + s
c3 = −t
c4 = s,

(7)

where t and s are arbitrary parameters. Taking t = 1 and s = 0 in
(7) yields from (4) the linear relation

3v1 + v2 − v3 = 0,

which shows that v3 = −3v1 − v2; that is, v3 ∈ span{v1, v2}.
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Similarly, taking t = 0 and s = 1 in (7) yields

v1 + v2 + v4 = 0,

which shows that v4 = −v1 − v2; that is, v4 ∈ span{v1, v2}.
We then have that both v3 and v4 are in the span of {v1, v2}. Conse-
quently,

{v1, v2, v3, v4} ⊆ span{v1, v2},

from which we get that

span{v1, v2, v3, v4} ⊆ span{v1, v2},

since span{v1, v2, v3, v4} is the smallest subspace of R3 which contains
{v1, v2, v3, v4}. Combining this with

span{v1, v2} ⊆ span{v1, v2, v3, v4},

we conclude that

span{v1, v2} = span{v1, v2, v3, v4};

that is, {v1, v2} spans span{v1, v2, v3, v4}.
To see that {v1, v2} is linearly independent, observe that v1 and v2

are not multiples of each other. We therefore conclude that {v1, v2}
is a basis for span{v1, v2, v3, v4}. �

3. Find a basis for the solution space of the system
x1 − x2 + x3 − x4 = 0
2x1 − x2 − 2x4 = 0
−x1 + x3 + x4 = 0,

(8)

and compute its dimension.

Solution: We first find the solution space, W , of the system. In
order to do this, we reduce the augmented matrix of this system,

R1

R2

R3

 1 −1 1 −1 | 0
2 −1 0 −2 | 0
−1 0 1 1 | 0

 ,
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to its reduced row–echelon form: 1 0 −1 0 | 0
0 1 −2 0 | 0
0 0 0 1 | 0

 .

Consequently, the system in (8) is equivalent to the system
x1 − x3 = 0

x2 − 2x3 = 0
x4 = 0.

(9)

Solving for the leading variables in the system in (9) we obtain the
solutions 

x1 = t
x2 = 2t
x3 = t
x4 = 0,

where t is an arbitrary parameter. I then follows that the solution
space of system (9) is

W = span




1
2
1
0


 .

Hence 


1
2
1
0




is a basis for W and therefore dim(W ) = 1. �

4. Prove that any set of four vectors in R3 must be linearly dependent.

Proof: Let v1 , v2, v3 and v4 denote four vectors in R3 and write

v1 =

 a11

a21

a31

 , v2 =

 a12

a22

a32

 , v3 =

 a13

a23

a33

 and v4 =

 a14

a24

a34

 .

Consider the vector equation

c1v1 + c2v2 + c3v3 + c4v4, = 0. (10)
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This equation translate into the homogeneous system
a11c1 + a12c2 + a13c3 + a14c4 = 0
a21c1 + a22c2 + a23c3 + a24c4 = 0
a31c1 + a32c2 + a33c3 + a34c4 = 0,

(11)

of 3 linear equations in 4 unknowns. It then follows from the Fundamental
Theorem for homogeneous linear systems that system (11) has infinitely many
solutions. Consequently, the vector equation in (10) has a nontrivial solution,
and therefore the set {v1, v2, v3, v4} is linearly dependent.

5. Show that if the set {v1, v2} is a linearly independent subset of Rn, then so
is the set {v1, cv1 + v2}, where c is a scalar, and, conversely, if {v1, cv1 + v2}
is linearly independent, then so is {v1, v2}. Show also that span{v1, v2} =
span{v1, cv1 + v2}.

(a) First we prove that {v1, v2} is a linearly independent subset of Rn, then so
is the set {v1, cv1 + v2},

Proof: Assume that {v1, v2} is a linearly independent and consider the
vector equation

c1v1 + c2(cv1 + v2) = 0. (12)

Applying the distributive and associative properties, the equation in (12)
turns into

(c1 + cc2)v1 + c2v2 = 0. (13)

It follows from (13) and the linear independence of {v1, v2} that{
c1 + cc2 = 0

c2 = 0.
(14)

The system in (14) has only the trivial solution: c2 = c1 = 0. Hence, the
vector equation in (12) has only the trivial solution and therefore the set
{v1, cv1 + v2} is linearly independent.

(b) Next, we prove the converse of the statement in (a): If {v1, cv1 + v2} is
linearly independent, then {v1, v2} is a linearly independent.

Proof: Assume that {v1, cv1 + v2} is a linearly independent and consider
the vector equation

c1v1 + c2v2 = 0. (15)



Math 60. Rumbos Spring 2009 7

Adding 0 = cc2v1− cc2v1 to the left–hand side of the equation in (15) and
applying the distributive and associative properties we get

(c1 − cc2)v1 + c2(cv1 + v2) = 0. (16)

It follows from (16) and the linear independence of {v1, cv1 + v2} that{
c1 − cc2 = 0

c2 = 0.
(17)

The system in (17) has only the trivial solution: c2 = c1 = 0. Hence, the
vector equation in (15) has only the trivial solution and therefore the set
{v1, v2} is linearly independent.

(c) We prove that that span{v1, v2} = span{v1, cv1 + v2}.

Proof: Let W = span{v1, v2}. Then, W is a subspace which contains v1

and v2 and all their linear combinations; in particular, cv1 + v2 ∈ W . We
then have that

{v1, cv1 + v2} ⊆ W.

It then follows that
span{v1, cv1 + v2} ⊆ W, (18)

since span{v1, cv1 + v2} is the smallest subspace of Rn which contains
{v1, cv1 + v2} . Ont the other hand, for any u ∈ W there exist scalars
c1 and c2 such that

u = c1v1 + c2v2.

Consequently,
u = c1v1 + c2v2 + cc2v1 − cc2v1

= (c1 − cc2)v1 + c2(cv1 + v2),

which shows that u ∈ span{v1, cv1 + v2}; thus,

u ∈ W ⇒ u ∈ span{v1, cv1 + v2},

or
W ⊆ span{v1, cv1 + v2}.

Combining this with (18) yields that

W = span{v1, cv1 + v2}.
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6. Let J and H be planes in R3 given by

J =


x

y
z

 ∣∣∣ 2x + 3y − 6z = 0

 and H =


x

y
z

 ∣∣∣ x− 2y + z = 0

 .

(a) Give bases for J and H and compute their dimensions.

Solution: To find a basis for J , we solve the equation

2x + 3y + z = 0

to get the solution space J = span


3

0
1

 ,

0
2
1

 . Thus, the

set 
3

0
1

 ,

0
3
1


is a basis for J and so dim(J) = 2.
Similarly, for H, we solve

x− 2y + z = 0

and obtain that 
 2

1
0

 ,

 1
0
−1


is a basis for H; thus, dim(H) = 2. �

(b) Give a basis for the subspace J ∩H and compute dim(J ∩H).

Solution: Vectors

x
y
z

 in the intersection of J and H if they

are solutions to the system of equations{
2x + 3y − 6z = 0
x− 2y + z = 0.

(19)

Thus, to find J ∩ H, we may elementary row operations on the
augmented matrix

R1

R2

(
2 3 −6 | 0
1 −2 1 | 0

)
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to obtain the reduced matrix(
1 0 −9/7 | 0
0 1 −8/7 | 0

)
.

Thus, the system in (19) is equivalent to{
x − 9

7
z = 0

y − 8
7
z = 0,

(20)

Solving for the leading variables in system (20) and setting z = 7t,
where t is an arbitrary parameter, wee obtain that

J ∩H = span


 9

8
7

 .

Thus, the set 
 9

8
7


is a basis for J ∩H and, therefore, dim(J ∩H) = 1. �

7. Let W be a subspace of Rn.

(a) Prove that if v ∈ W and v 6= 0, then rv = sv implies that r = s, where r
and s are scalars.

Proof: Suppose that v ∈ W , where W is a subspace of Rn, and that v 6= 0.
Suppose also that

rv = sv (21)

for some scalars r and s. Add −sv on both sides of the vector equation in
(21) and apply the distributive property to obtain

(r − s)v = 0. (22)

Taking the Euclidean inner product with v of both sides of (22) yields

(r − s)〈v, v〉 = 0, (23)

where we have used the bi–linearity of the inner product. It then follows
form (23), the positive definiteness of the inner product, and the assump-
tion that v 6= 0, that

r − s = 0

and therefore r = s, which was to be shown.
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(b) Prove that if W has more than one element, then W has infinitely many
elements.

Proof: Since W has at least two elements, there has to be a vector, v, in W
such that v 6= 0. Now, for any t ∈ R, tv ∈ W because W is closed under
scalar multiplication. By part (a), t1v 6= t2v for any t1 6= t2. Consequently,
W contains infinitely many vectors.

8. Let W be a subspace of Rn and S1 and S2 be subsets of W .

(a) Show that span(S1 ∩ S2) ⊆ span(S1) ∩ span(S2).

Proof: First observe that S1 ∩ S2 ⊆ S1 and S1 ∩ S2 ⊆ S2. Consequently,

span(S1 ∩ S2) ⊆ span(S1) and span(S1 ∩ S2) ⊆ span(S2).

It then follows that

span(S1 ∩ S2) ⊆ span(S1) ∩ span(S2),

which was to be shown.

(b) Give an example in which span(S1 ∩ S2) 6= span(S1) ∩ span(S2).

Solution: Let S1 =

{(
1
0

)}
and S2 =

{(
−1

0

)}
. Then, S1 ∩

S2 = ∅ so that span(S1 ∩ S2) = {0}, where 0 denotes the zero
vector in R2.
On the other hand,

span(S1) =

{(
x
0

)
∈ R2

∣∣∣ x ∈ R
}

and

span(S2) =

{(
x
0

)
∈ R2

∣∣∣ x ∈ R
}

.

Hence,

span(S1) ∩ span(S2) =

{(
x
0

)
∈ R2

∣∣∣ x ∈ R
}
6= {0}.

�
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(c) Show that if S1 ⊆ S2 and S2 is linearly independent, then S1 is also linearly
independent.

Proof: Suppose that S1 ⊆ S2 and S2 is linearly independent, and that
c1, c2, . . . , cn solve the vector equation

c1v1 + c2v2 + · · ·+ ckvk = 0, (24)

where v1, v2, . . . , vk are vectors in S1. Since we are assuming that S1 ⊆ S2,
the vectors v1, v2, . . . , vk are also in S2, which is assumed to be linearly
independent; consequently,

c1 = c2 = · · · = ck = 0.

Thus, we have shown that for any finite set of vectors, v1, v2, . . . , vk, in
S1, the vector equation in (24) has only the trivial solution. Hence, S1 is
linearly independent.

(d) Show that if S1 ⊆ S2 and S1 is linearly dependent, then S2 is also linearly
dependent.

Proof: Suppose that S1 ⊆ S2 and S1 is linearly dependent. Then, there
exist vectors v1, v2, . . . , vk are vectors in S1 such that the equation

c1v1 + c2v2 + · · ·+ ckvk = 0, (25)

has a nontrivial solution. Since we are assuming that S1 ⊆ S2, the vectors
v1, v2, . . . , vk are also in S2. This proves that S2 is linearly dependent.

9. Let W1 and W2 be two subspaces of Rn. We write W1 ⊕W2 for the subspace
W1 + W2 for the special case in which V = W1 ∩W2 = {0}. Show that every
vector v ∈ W1⊕W2 can be written in the form v = v1 + v2, where v1 ∈ W1 and
v2 ∈ W2, in one and only one way; that is, if v = u1 + u2, where u1 ∈ W1 and
u2 ∈ W2, then u1 = v1 and u2 = v2.

Proof: Suppose that W1 and W2 are two subspaces of Rn which have only the
zero vector in common; that is, W1 ∩W2 = {0}. Let v be any in ∈ W1 + W2.
Then, v = v1 + v2, where v1 ∈ W1 and v2 ∈ W2. Suppose that v can also be
written as v = u1 + u2, where u1 ∈ W1 and u2 ∈ W2. Then,

v1 + v2 = u1 + u2,
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from which we get that
v1 − u1 = v2 − u2, (26)

where v1 − u1 ∈ W1 and v2 − u2 ∈ W2 since W1 and W2 are subspaces of Rn.
It also follows from (26) that v1 − u1 ∈ W2. Thus, v1 − u1 ∈ W1 ∩W2 = {0},
which implies that

v1 − u1 = 0,

or
v1 = u1.

Similarly, we get that v2 = u2.

10. Let v ∈ Rn and define W = {w ∈ Rn | 〈w, v〉 = 0}.

(a) Prove that W is a subspace of Rn.

Proof: First, observe that W 6= ∅ because 〈0, v〉 = 0 and therefore 0 ∈ W
and so W is nonempty.

Next, we show that W is closed under addition and scalar multiplication.

To see that W is closed under scalar multiplication, observe that, by the
bi–linearity property of the inner product, if w ∈ W , then

〈〈v, tw〉 = t〈v, w〉 = t · 0 = 0

for all t ∈ R.

To show that W is closed under vector addition, let w1 and w2 be two
vectors in W . Then, applying the bi–linearity property of the inner product
again,

〈w1 + w2, v〉 = 〈w1, v〉+ 〈w2, v〉 = 0 + 0 = 0;

hence, w1 + w2 ∈ W .

(b) Suppose that v 6= 0 and compute dim(W ).

Solution: Let B = {w1, w2, . . . wk} be a basis for W . Then,
dim(W ) = k and we would like to determine what k is.
First note that v 6∈ span(B). For, suppose that v ∈ span(B) = W ,
then

〈v, v〉 = 0.

Thus, by the positive definiteness of the Euclidean inner product,
it follows that v = 0, but we are assuming that v 6= 0. Conse-
quently, the set

B ∪ {v} = {w1, w2, . . . wk, v}
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is linearly independent. We claim that B ∪{v} also spans Rn. To
see why this is so, let u ∈ Rn be any vector in Rn, and let

t =
〈u, v〉
‖v‖2

.

Write
u = tv + (u− tv),

and observe that u− tv ∈ W . To see why this is so, compute

〈u− tv, v〉 = 〈u, v〉 − t〈v, v〉

= 〈u, v〉 − t‖v‖2

= 〈u, v〉 − 〈u, v〉
‖v‖2

‖v‖2

= 〈u, v〉 − 〈u, v〉

= 0.

Thus, u−tv ∈ W . It then follows that there exist scalars c1, c2, . . . , ck

such that
u− tv = c1w1 + c2w2 + · · ·+ ckwk.

Thus,
u = c1w1 + c2w2 + · · ·+ ckwk + tv,

which shows that u ∈ span(B∪{v}). Consequently, B∪{v} spans
Rn. Therefore, since B∪{v} is also linearly independent, it forms
a basis for Rn. We then have that B ∪{v} must have n vectors in
it, since dim(Rn) = n; that is,

k + 1 = n,

from which we get that

dim(W ) = n− 1.

�


