Review Problems for Exam 2

1. Let u denote a unit vector in \mathbb{R}^{n} and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f(v)=\langle u, v\rangle u \quad \text { for all } v \in \mathbb{R}^{n}
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.
(a) Verify that f is linear.
(b) Give the image, \mathcal{I}_{f}, and null space, \mathcal{N}_{f}, of f, and compute $\operatorname{dim}\left(\mathcal{I}_{f}\right)$.
(c) Use the Dimension Theorem for linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation which maps the parallelogram spanned by

$$
v_{1}=\binom{2}{-1} \quad \text { and } \quad v_{2}=\binom{2}{1}
$$

to the parallelogram spanned by

$$
w_{1}=\binom{-1}{1} \quad \text { and } \quad w_{2}=\binom{1}{1}
$$

(a) Give the matrix representation, M_{T}, relative to the standard basis in \mathbb{R}^{2}.
(b) Compute $\operatorname{det}(T)$. Does T preserve orientation?
(c) Show that T is invertible and compute the inverse of T.
(d) Does T have real eigenvalues? If so, compute them and their corresponding eigenspaces.
3. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T(v)=A v \quad \text { for all } v \in \mathbb{R}^{3}
$$

where A is the 3×3 matrix given by

$$
A=\left(\begin{array}{rrr}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right)
$$

Find all eigenvalues and corresponding eigenspaces for the transformation T.
4. Find a value of d for which the matrix

$$
A=\left(\begin{array}{rr}
1 & -2 \\
3 & d
\end{array}\right)
$$

is not invertible.
Show that, for that value of $d, \lambda=0$ is an eigenvalue of A. Give the eigenspace corresponding to 0 . What is the dimension of $E_{A}(0)$?
5. Use the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for all $A, B \in \mathbb{M}(n, n)$ to compute $\operatorname{det}\left(A^{-1}\right.$, provided that A is invertible.
6. Let A and B be $n \times n$ matrices. Show that if $A B$ is invertible, then so is A.
7. Let A be a 3×3 matrix satisfying $A^{3}-6 A^{2}-2 A+12 I=O$, where I is the 3×3 identity matrix and O is the 3×3 zero matrix.
(a) Prove that A is invertible and given a formula for computing its inverse in terms of I, A and A^{2}.
(b) Prove that if λ is an eigenvalue of A, then $\lambda^{3}-6 \lambda^{2}-2 \lambda+12=0$. Deduce therefore that λ is one of $6, \sqrt{2}$ or $-\sqrt{2}$.
8. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(v)=A v$ for all $v \in \mathbb{R}^{2}$, where A is a 2×2 matrix. Let area $\left(P\left(v_{1}, v_{2}\right)\right)$ denote the are of the parallelogram determined by the vectors v_{1} and v_{2}. Prove that

$$
\operatorname{area} P\left(\left(T\left(v_{1}\right), T\left(v_{2}\right)\right)\right)=|\operatorname{det}(A)| \cdot \operatorname{area}\left(P\left(v_{1}, v_{2}\right)\right)
$$

