Solutions to Review Problems for Exam 2

1. Let u denote a unit vector in \mathbb{R}^{n} and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f(v)=\langle u, v\rangle u \quad \text { for all } v \in \mathbb{R}^{n}
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.
(a) Verify that f is linear.

Solution: For $v, w \in \mathbb{R}^{n}$, compute

$$
\begin{aligned}
f(v+w) & =\langle u, v+w\rangle u \\
& =(\langle u, v\rangle+\langle u, w\rangle) u \\
& =\langle u, v\rangle u+\langle u, w\rangle u \\
& =f(v)+f(w) .
\end{aligned}
$$

Similarly, for a scalar c and $v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f(c v) & =\langle u, c v\rangle u \\
& =c\langle u, v\rangle u \\
& =c f(v) .
\end{aligned}
$$

(b) Give the image, \mathcal{I}_{f}, and null space, \mathcal{N}_{f}, of f, and compute $\operatorname{dim}\left(\mathcal{I}_{f}\right)$.

Solution: The image of f is the set

$$
\mathcal{I}_{f}=\left\{w \in \mathbb{R}^{n} \mid w=f(v) \text { for some } v \in \mathbb{R}^{n}\right\} .
$$

We claim that $\mathcal{I}_{f}=\operatorname{span}\{u\}$. To see why this is so, first observe that $f(u)=\langle u, u\rangle u=\|u\|^{2} u=u$, since u is a unit vector. Thus, if $w \in \mathcal{I}_{f}$, then $w=c u$, for some scalar c, so that, by the linearity of f,

$$
w=c f(u)=f(c u)
$$

which shows that $w \in \mathcal{I}_{f}$. Thus

$$
\begin{equation*}
\operatorname{span}\{u\} \subseteq \mathcal{I}_{f} \tag{1}
\end{equation*}
$$

Next, suppose that $w \in \mathcal{I}_{f}$; then, $w=f(v)$ for some $v \in \mathbb{R}^{n}$, so that

$$
w=\langle u, v\rangle u \in \operatorname{span}\{u\}
$$

Thus,

$$
\begin{equation*}
\mathcal{I}_{f} \subseteq \operatorname{span}\{u\} \tag{2}
\end{equation*}
$$

Combining (1) and (2) yields that

$$
\mathcal{I}_{f}=\operatorname{span}\{u\}
$$

It then follows that

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{I}_{f}\right)=1 \tag{3}
\end{equation*}
$$

The null space of f is the set

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid f(v)=\mathbf{0}\right\} .
$$

Thus,

$$
\begin{array}{ll}
v \in \mathcal{N}_{f} & \text { iff } \quad\langle u, v\rangle u=\mathbf{0} \\
& \text { iff } \quad\langle u, v\rangle=0,
\end{array}
$$

since $u \neq \mathbf{0}$. It then follows that

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid\langle u, v\rangle=0\right\} ;
$$

that is, \mathcal{N}_{f} is the space of vectors which are orthogonal to u.
(c) Use the Dimension Theorem for linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.
Solution: Using the dimension theorem and (3) we get that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)+1=n
$$

which implies that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)=n-1
$$

2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation which maps the parallelogram spanned by

$$
v_{1}=\binom{2}{-1} \quad \text { and } \quad v_{2}=\binom{2}{1}
$$

to the parallelogram spanned by

$$
w_{1}=\binom{-1}{1} \quad \text { and } \quad w_{2}=\binom{1}{1} .
$$

(a) Give the matrix representation, M_{T}, relative to the standard basis in \mathbb{R}^{2}.

Solution: Assume that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear and that $T\left(v_{1}\right)=$ w_{1} and $T\left(v_{2}\right)=w_{2}$. Writing v_{1} and v_{2} in terms of the standard basis in \mathbb{R}^{2}, we have that

$$
v_{1}=2 e_{1}-e_{2}
$$

and

$$
v_{2}=2 e_{1}+e_{2}
$$

Thus, applying T and the linearity of T we then have that

$$
\begin{equation*}
2 T\left(e_{1}\right)-T\left(e_{2}\right)=w_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
2 T\left(e_{1}\right)+T\left(e_{2}\right)=w_{2} \tag{5}
\end{equation*}
$$

We can solve (4) and (5) simultaneously to obtain that

$$
T\left(e_{1}\right)=\binom{0}{1 / 2} \quad \text { and } \quad\binom{1}{0} .
$$

It then follows that the matrix representation, M_{T}, or T, relative to the standard basis in \mathbb{R}^{2} is

$$
M_{T}=\left[\begin{array}{ll}
T\left(e_{1}\right) & T\left(e_{2}\right)
\end{array}\right]=\left(\begin{array}{cc}
0 & 1 \\
1 / 2 & 0
\end{array}\right) .
$$

(b) Compute $\operatorname{det}(T)$. Does T preserve orientation?

Solution: Compute

$$
\operatorname{det}(T)=\operatorname{det}\left(M_{T}\right)=-\frac{1}{2}
$$

Since, $\operatorname{det}(T)<0, T$ reverses orientation.
(c) Show that T is invertible and compute the inverse of T.

Solution: Since $\operatorname{det}(T) \neq 0, T$ is invertible, and the matrix representation for the inverse of T is given by

$$
M_{T}^{-1}=\frac{1}{\operatorname{det}(T)}\left(\begin{array}{cr}
0 & -1 \\
-1 / 2 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)
$$

Consequently, the inverse of T is given by

$$
\begin{aligned}
& \qquad T^{-1}\binom{x}{y}=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{2 y}{x} \\
& \text { for all }\binom{x}{y} \in \mathbb{R}^{2} \text {. }
\end{aligned}
$$

(d) Does T have real eigenvalues? If so, compute them and their corresponding eigenspaces.

Solution: The eigenvalues of T are scalars, λ, for which the system of equations

$$
\begin{equation*}
\left(M_{T}-\lambda I\right) v=\mathbf{0} \tag{6}
\end{equation*}
$$

has nontrivial solutions. The system in (6) has nontrivial solutions if and only if the columns of the matrix

$$
M_{T}-\lambda I=\left(\begin{array}{cc}
-\lambda & 1 \\
1 / 2 & -\lambda
\end{array}\right)
$$

are linearly dependent; this, in turn, is the case if and only if

$$
\operatorname{det}\left(M_{T}-\lambda I\right)=0
$$

or

$$
\lambda^{2}-\frac{1}{2}=0
$$

Thus, $\lambda_{1}=-\frac{1}{\sqrt{2}}$ and $\lambda_{2}=\frac{1}{\sqrt{2}}$ are eigenvalues of T.
To find the eigespace corresponding to λ_{1} we solve the homogenous system in (6) for $\lambda=\lambda_{1}$. We can do this by performing row operations of the augmented matrix

$$
\left(\begin{array}{cc|c}
\frac{1}{\sqrt{2}} & 1 & 0 \\
\frac{1}{2} & \frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

which is row-equivalent to the matrix

$$
\left(\begin{array}{cc|c}
1 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Thus, the system in (6) for $\lambda=\lambda_{1}$ is equivalent to the homogeneous equation

$$
x_{1}+\sqrt{2} x_{2}=0
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{\sqrt{2}}{-1} .
$$

Thus, the eigenspace of T associated with $\lambda_{1}=-\frac{1}{\sqrt{2}}$ is

$$
E_{T}\left(\lambda_{1}\right)=\operatorname{span}\left\{\binom{\sqrt{2}}{-1}\right\} .
$$

Similarly, we can compute the eigenspace of T associated with $\lambda_{2}=\frac{1}{\sqrt{2}}$ to be

$$
E_{T}\left(\lambda_{2}\right)=\operatorname{span}\left\{\binom{\sqrt{2}}{1}\right\} .
$$

3. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T(v)=A v \quad \text { for all } v \in \mathbb{R}^{3}
$$

where A is the 3×3 matrix given by

$$
A=\left(\begin{array}{rrr}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right)
$$

Find all eigenvalues and corresponding eigenspaces for the transformation T.
Solution: First, observe that the third row of A is a multiple of the first and, therefore, A is singular. This implies that $\lambda=0$ is an eigenvalue of A. to find the corresponding eigenspace, we solve the homogeneous system

$$
\begin{equation*}
A v=\mathbf{0} \tag{7}
\end{equation*}
$$

for $v \in \mathbb{R}^{3}$. In order to do this, we reduce the augmented matrix

$$
\left(\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
6 & -1 & 0 & 0 \\
-1 & -2 & -1 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{ccc:c}
1 & 0 & 1 / 13 & 0 \\
0 & 1 & 6 / 13 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus the system in (7) is equivalent to

$$
\left\{\begin{aligned}
x_{1}+\frac{1}{13} x_{3} & =0 \\
x_{2}+\frac{6}{13} x_{3} & =0
\end{aligned}\right.
$$

which can be solved to yield the solutions

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{c}
1 \\
6 \\
-13
\end{array}\right)
$$

Thus, the eigenspace of A associated with $\lambda_{1}=0$ is

$$
E_{A}(0)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
6 \\
-13
\end{array}\right)\right\}
$$

Next, we see is A has other eigenvalues. In order to do this, we look for values of λ for which the homogeneous system

$$
\begin{equation*}
(A-\lambda I) v=\mathbf{0} \tag{8}
\end{equation*}
$$

has nontrivial solutions. The system in (8) has nontrivial solutions if and only if $\operatorname{det}(A-\lambda I)=0$, where

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 2 & 1 \\
6 & -1-\lambda & 0 \\
-1 & -2 & -1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
-1-\lambda & 0 \\
-2 & -1-\lambda
\end{array}\right|-2\left|\begin{array}{cc}
6 & 0 \\
-1 & -1-\lambda
\end{array}\right|+\left|\begin{array}{cc}
6 & -1-\lambda \\
-1 & -2
\end{array}\right| \\
& =(1-\lambda)(\lambda+1)^{2}+12(\lambda+1)-12-(\lambda+1) \\
& =-\lambda(\lambda+4)(\lambda-3)
\end{aligned}
$$

It then follows that $\lambda_{1}=0, \lambda_{2}=-4$ and $\lambda_{3}=3$ are eigenvalues of A.

We have already compute $E_{A}\left(\lambda_{1}\right)$. To compute the eigenspace corresponding to λ_{2}, we solve the homogeneous system (8) with $\lambda=\lambda_{2}=$ -4 . We do this by reducing the augmented matrix

$$
\left(\begin{array}{rrr|r}
5 & 2 & 1 & 0 \\
6 & 3 & 0 & 0 \\
-1 & -2 & 3 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus the system in (8) with $\lambda=-4$ is equivalent to

$$
\left\{\begin{aligned}
x_{1}+x_{3} & =0 \\
x_{2}-2 x_{3} & =0
\end{aligned}\right.
$$

which can be solved to yield the solutions

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right) .
$$

Thus, the eigenspace of A associated with $\lambda_{2}=-4$ is

$$
E_{A}(-4)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)\right\} .
$$

Similar calculations show that

$$
E_{A}(3)=\operatorname{span}\left\{\left(\begin{array}{r}
2 \\
3 \\
-2
\end{array}\right)\right\} .
$$

4. Find a value of d for which the matrix

$$
A=\left(\begin{array}{rr}
1 & -2 \\
3 & d
\end{array}\right)
$$

is not invertible.
Show that, for that value of $d, \lambda=0$ is an eigenvalue of A. Give the eigenspace corresponding to 0 . What is the dimension of $E_{A}(0)$?

Solution: The matrix A fails to be invertible when $\operatorname{det}(A)=0$. This occurs when $d=-6$. For this value of d, the matrix A becomes

$$
A=\left(\begin{array}{ll}
1 & -2 \\
3 & -6
\end{array}\right)
$$

and observe that its second column is a multiple of the first. Therefore, the columns of A are linearly dependent; hence, the system

$$
\begin{equation*}
A v=\mathbf{0} \tag{9}
\end{equation*}
$$

has nontrivial solutions and therefore $\lambda=0$ is an eigenvalue of A. To find the corresponding eigenspace, observe that the system in (9) is equivalent to the equation

$$
x_{1}-2 x_{2}=0
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{2}{1}
$$

Thus, the eigenspace of A associated with $\lambda=0$ is

$$
E_{A}(0)=\operatorname{span}\left\{\binom{2}{1}\right\} .
$$

Therefore, $\operatorname{dim}\left(E_{A}(0)\right)=1$.
5. Use the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for all $A, B \in \mathbb{M}(n, n)$ to compute $\operatorname{det}\left(A^{-1}\right)$, provided that A is invertible.

Proof: Assume that A is invertible with inverse A^{-1}. Then,

$$
A^{-1} A=I,
$$

where I is the $n \times n$ identity matrix. Taking determinants on both sides of the equation yields that

$$
\operatorname{det}\left(A^{-1} A\right)=1
$$

from which we get that

$$
\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=1
$$

This, since $\operatorname{det}(A) \neq 0$ because A is invertible, we get that

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

6. Let A and B be $n \times n$ matrices. Show that if $A B$ is invertible, then so is A.

Proof: Suppose that $A B$ is invertible. Then, there exists an $n \times n$ matrix, C, such that

$$
(A B) C=I
$$

where I is the $n \times n$ identity matrix. Thus, by associativity of matrix multiplication,

$$
A(B C)=I
$$

which shows that A has a right-inverse and is therefore invertible.
7. Let A be a 3×3 matrix satisfying $A^{3}-6 A^{2}-2 A+12 I=O$, where I is the 3×3 identity matrix and O is the 3×3 zero matrix.
(a) Prove that A is invertible and given a formula for computing its inverse in terms of I, A and A^{2}.

Solution: We can solve the equation $A^{3}-6 A^{2}-2 A+12 I=O$ for $12 I$ and then divide by 12 to get that

$$
A\left(\frac{1}{6} I+\frac{1}{2} A-\frac{1}{12} A^{2}\right)=I
$$

which shows that A has a right-inverse and is therefore invertible with

$$
A^{-1}=\frac{1}{6} I+\frac{1}{2} A-\frac{1}{12} A^{2} .
$$

(b) Prove that if λ is an eigenvalue of A, then $\lambda^{3}-6 \lambda^{2}-2 \lambda+12=0$. Deduce therefore that λ is one of $6, \sqrt{2}$ or $-\sqrt{2}$.

Proof: Let λ be an eigenvalue of A. Then, there exists a nonzero vector, v, in \mathbb{R}^{3} such that

$$
A v=\lambda v
$$

Multiplying on both sides by A we then get that

$$
A^{2} v=\lambda A v=\lambda(\lambda v)=\lambda^{2} v
$$

Multiplying the last equation by A we then get that

$$
A^{3} v=\lambda^{3} v
$$

Thus, applying $A^{3}-6 A^{2}-2 A+12 I=O$ to to v we get that

$$
\left(A^{3}-6 A^{2}-2 A+12 I\right) v=O v
$$

which, by the distributive property, implies that

$$
A^{3} v-6 A^{2} v-2 A v+12 v=\mathbf{0}
$$

Thus,

$$
\lambda^{3} v-6 \lambda^{2} v-2 \lambda v+12 v=\mathbf{0}
$$

or

$$
\left(\lambda^{3}-6 \lambda^{2}-2 \lambda+12\right) v=\mathbf{0}
$$

from which we get that

$$
\lambda^{3}-6 \lambda^{2}-2 \lambda+12=0
$$

since v is nonzero.
Observe that $\lambda^{3}-6 \lambda^{2}-2 \lambda+12$ factors into $(\lambda-6)(\lambda+\sqrt{2})(\lambda-\sqrt{2})$.
8. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(v)=A v$ for all $v \in \mathbb{R}^{2}$, where A is a 2×2 matrix. Let area $\left(P\left(v_{1}, v_{2}\right)\right)$ denote the area of the parallelogram determined by the vectors v_{1} and v_{2}. Prove that

$$
\operatorname{area}\left(P\left(T\left(v_{1}\right), T\left(v_{2}\right)\right)\right)=|\operatorname{det}(A)| \cdot \operatorname{area}\left(P\left(v_{1}, v_{2}\right)\right)
$$

Solution: Observe that the matrix [$\left.T\left(v_{1}\right) T\left(v_{2}\right)\right]=\left[\begin{array}{ll}A v_{1} & A v_{2}\end{array}\right]$ can be written as

$$
\left[\begin{array}{ll}
T\left(v_{1}\right) & T\left(v_{2}\right)
\end{array}\right]=A\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]
$$

by the definition of the matrix product. Thus, taking the determinant on both sides we have

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ll}
T\left(v_{1}\right) & \left.\left.T\left(v_{2}\right)\right]\right)
\end{array}\right.\right. & =\operatorname{det}\left(A\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\right)
\end{aligned}
$$

Thus, taking the absolute value on both sides,

$$
\operatorname{area}\left(P\left(T\left(v_{1}\right), T\left(v_{2}\right)\right)\right)=|\operatorname{det}(A)| \cdot \operatorname{area}\left(P\left(v_{1}, v_{2}\right)\right)
$$

