Solutions to Review Problems for Exam 2

1. Let u denote a unit vector in \mathbb{R}^n and define $f: \mathbb{R}^n \to \mathbb{R}^n$ by

$$f(v) = \langle u, v \rangle u$$
 for all $v \in \mathbb{R}^n$,

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n .

(a) Verify that f is linear.

Solution: For $v, w \in \mathbb{R}^n$, compute

$$f(v+w) = \langle u, v+w \rangle u$$

= $(\langle u, v \rangle + \langle u, w \rangle) u$
= $\langle u, v \rangle u + \langle u, w \rangle u$
= $f(v) + f(w)$.

Similarly, for a scalar c and $v \in \mathbb{R}^n$,

$$\begin{array}{rcl} f(cv) & = & \langle u, cv \rangle u \\ & = & c \langle u, v \rangle u \\ & = & cf(v). \end{array}$$

(b) Give the image, \mathcal{I}_f , and null space, \mathcal{N}_f , of f, and compute dim(\mathcal{I}_f).

Solution: The image of f is the set

$$\mathcal{I}_f = \{ w \in \mathbb{R}^n \mid w = f(v) \text{ for some } v \in \mathbb{R}^n \}.$$

We claim that $\mathcal{I}_f = \text{span}\{u\}$. To see why this is so, first observe that $f(u) = \langle u, u \rangle u = ||u||^2 u = u$, since u is a unit vector. Thus, if $w \in \mathcal{I}_f$, then w = cu, for some scalar c, so that, by the linearity of f,

$$w = cf(u) = f(cu),$$

which shows that $w \in \mathcal{I}_f$. Thus

$$\operatorname{span}\{u\} \subseteq \mathcal{I}_f. \tag{1}$$

Next, suppose that $w \in \mathcal{I}_f$; then, w = f(v) for some $v \in \mathbb{R}^n$, so that

$$w = \langle u, v \rangle u \in \operatorname{span}\{u\}.$$

Thus,

$$\mathcal{I}_f \subseteq \operatorname{span}\{u\}. \tag{2}$$

Combining (1) and (2) yields that

$$\mathcal{I}_f = \operatorname{span}\{u\}.$$

It then follows that

$$\dim(\mathcal{I}_f) = 1. \tag{3}$$

The null space of f is the set

$$\mathcal{N}_f = \{ v \in \mathbb{R}^n \mid f(v) = \mathbf{0} \}.$$

Thus,

$$v \in \mathcal{N}_f$$
 iff $\langle u, v \rangle u = \mathbf{0}$
iff $\langle u, v \rangle = 0$,

since $u \neq \mathbf{0}$. It then follows that

$$\mathcal{N}_f = \{ v \in \mathbb{R}^n \mid \langle u, v \rangle = 0 \};$$

that is, \mathcal{N}_f is the space of vectors which are orthogonal to u. \square

(c) Use the Dimension Theorem for linear transformations $T \colon \mathbb{R}^n \to \mathbb{R}^m$,

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n,$$

to compute $\dim(\mathcal{N}_f)$.

Solution: Using the dimension theorem and (3) we get that

$$\dim(\mathcal{N}_f) + 1 = n,$$

which implies that

$$\dim(\mathcal{N}_f) = n - 1.$$

2. Let $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote the linear transformation which maps the parallelogram spanned by

$$v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

to the parallelogram spanned by

$$w_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

(a) Give the matrix representation, M_T , relative to the standard basis in \mathbb{R}^2 .

Solution: Assume that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear and that $T(v_1) = w_1$ and $T(v_2) = w_2$. Writing v_1 and v_2 in terms of the standard basis in \mathbb{R}^2 , we have that

$$v_1 = 2e_1 - e_2$$

and

$$v_2 = 2e_1 + e_2$$
.

Thus, applying T and the linearity of T we then have that

$$2T(e_1) - T(e_2) = w_1 (4)$$

and

$$2T(e_1) + T(e_2) = w_2. (5)$$

We can solve (4) and (5) simultaneously to obtain that

$$T(e_1) = \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

It then follows that the matrix representation, M_T , or T, relative to the standard basis in \mathbb{R}^2 is

$$M_T = [T(e_1) \quad T(e_2)] = \begin{pmatrix} 0 & 1 \\ 1/2 & 0 \end{pmatrix}.$$

(b) Compute det(T). Does T preserve orientation?

Solution: Compute

$$\det(T) = \det(M_T) = -\frac{1}{2}.$$

Since, det(T) < 0, T reverses orientation.

(c) Show that T is invertible and compute the inverse of T.

Solution: Since $det(T) \neq 0$, T is invertible, and the matrix representation for the inverse of T is given by

$$M_T^{-1} = \frac{1}{\det(T)} \begin{pmatrix} 0 & -1 \\ -1/2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}.$$

Consequently, the inverse of T is given by

$$T^{-1}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ x \end{pmatrix}$$
 for all $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.

(d) Does T have real eigenvalues? If so, compute them and their corresponding eigenspaces.

Solution: The eigenvalues of T are scalars, λ , for which the system of equations

$$(M_T - \lambda I)v = \mathbf{0} \tag{6}$$

has nontrivial solutions. The system in (6) has nontrivial solutions if and only if the columns of the matrix

$$M_T - \lambda I = \begin{pmatrix} -\lambda & 1\\ 1/2 & -\lambda \end{pmatrix}$$

are linearly dependent; this, in turn, is the case if and only if

$$\det(M_T - \lambda I) = 0,$$

or

$$\lambda^2 - \frac{1}{2} = 0.$$

Thus, $\lambda_1 = -\frac{1}{\sqrt{2}}$ and $\lambda_2 = \frac{1}{\sqrt{2}}$ are eigenvalues of T.

To find the eigespace corresponding to λ_1 we solve the homogenous system in (6) for $\lambda = \lambda_1$. We can do this by performing row operations of the augmented matrix

$$\left(\begin{array}{ccc|c} \frac{1}{\sqrt{2}} & 1 & | & 0\\ \frac{1}{2} & \frac{1}{\sqrt{2}} & | & 0 \end{array}\right),$$

which is row–equivalent to the matrix

$$\left(\begin{array}{ccc|c} 1 & \sqrt{2} & | & 0 \\ 0 & 0 & | & 0 \end{array}\right).$$

Thus, the system in (6) for $\lambda = \lambda_1$ is equivalent to the homogeneous equation

$$x_1 + \sqrt{2} \ x_2 = 0,$$

which has solutions

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = t \left(\begin{array}{c} \sqrt{2} \\ -1 \end{array}\right).$$

Thus, the eigenspace of T associated with $\lambda_1 = -\frac{1}{\sqrt{2}}$ is

$$E_T(\lambda_1) = \operatorname{span}\left\{ \begin{pmatrix} \sqrt{2} \\ -1 \end{pmatrix} \right\}.$$

Similarly, we can compute the eigenspace of T associated with $\lambda_2 = \frac{1}{\sqrt{2}}$ to be

$$E_T(\lambda_2) = \operatorname{span}\left\{ \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} \right\}.$$

3. Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T(v) = Av$$
 for all $v \in \mathbb{R}^3$,

where A is the 3×3 matrix given by

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}.$$

Find all eigenvalues and corresponding eigenspaces for the transformation T.

Solution: First, observe that the third row of A is a multiple of the first and, therefore, A is singular. This implies that $\lambda = 0$ is an eigenvalue of A. to find the corresponding eigenspace, we solve the homogeneous system

$$Av = \mathbf{0} \tag{7}$$

for $v \in \mathbb{R}^3$. In order to do this, we reduce the augmented matrix

$$\begin{pmatrix}
1 & 2 & 1 & | & 0 \\
6 & -1 & 0 & | & 0 \\
-1 & -2 & -1 & | & 0
\end{pmatrix}$$

to

$$\left(\begin{array}{ccc|ccc} 1 & 0 & 1/13 & | & 0 \\ 0 & 1 & 6/13 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{array}\right).$$

Thus the system in (7) is equivalent to

$$\begin{cases} x_1 + \frac{1}{13}x_3 = 0 \\ x_2 + \frac{6}{13}x_3 = 0, \end{cases}$$

which can be solved to yield the solutions

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ 6 \\ -13 \end{pmatrix}.$$

Thus, the eigenspace of A associated with $\lambda_1 = 0$ is

$$E_A(0) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 6 \\ -13 \end{pmatrix} \right\}.$$

Next, we see is A has other eigenvalues. In order to do this, we look for values of λ for which the homogeneous system

$$(A - \lambda I)v = \mathbf{0} \tag{8}$$

has nontrivial solutions. The system in (8) has nontrivial solutions if and only if $\det(A - \lambda I) = 0$, where

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & 1 \\ 6 & -1 - \lambda & 0 \\ -1 & -2 & -1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} -1 - \lambda & 0 \\ -2 & -1 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 6 & 0 \\ -1 & -1 - \lambda \end{vmatrix} + \begin{vmatrix} 6 & -1 - \lambda \\ -1 & -2 \end{vmatrix}$$

$$= (1 - \lambda)(\lambda + 1)^{2} + 12(\lambda + 1) - 12 - (\lambda + 1)$$

$$= -\lambda(\lambda + 4)(\lambda - 3).$$

It then follows that $\lambda_1 = 0$, $\lambda_2 = -4$ and $\lambda_3 = 3$ are eigenvalues of A.

We have already compute $E_A(\lambda_1)$. To compute the eigenspace corresponding to λ_2 , we solve the homogeneous system (8) with $\lambda = \lambda_2 = -4$. We do this by reducing the augmented matrix

$$\begin{pmatrix}
5 & 2 & 1 & | & 0 \\
6 & 3 & 0 & | & 0 \\
-1 & -2 & 3 & | & 0
\end{pmatrix}$$

to

$$\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & | & 0 \\
0 & 1 & -2 & | & 0 \\
0 & 0 & 0 & | & 0
\end{array}\right)$$

Thus the system in (8) with $\lambda = -4$ is equivalent to

$$\begin{cases} x_1 + x_3 = 0 \\ x_2 - 2x_3 = 0, \end{cases}$$

which can be solved to yield the solutions

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}.$$

Thus, the eigenspace of A associated with $\lambda_2 = -4$ is

$$E_A(-4) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \right\}.$$

Similar calculations show that

$$E_A(3) = \operatorname{span} \left\{ \begin{pmatrix} 2\\3\\-2 \end{pmatrix} \right\}.$$

4. Find a value of d for which the matrix

$$A = \left(\begin{array}{cc} 1 & -2 \\ 3 & d \end{array}\right)$$

is not invertible.

Show that, for that value of d, $\lambda = 0$ is an eigenvalue of A. Give the eigenspace corresponding to 0. What is the dimension of $E_A(0)$?

Solution: The matrix A fails to be invertible when det(A) = 0. This occurs when d = -6. For this value of d, the matrix A becomes

$$A = \left(\begin{array}{cc} 1 & -2 \\ 3 & -6 \end{array}\right)$$

and observe that its second column is a multiple of the first. Therefore, the columns of A are linearly dependent; hence, the system

$$Av = \mathbf{0} \tag{9}$$

has nontrivial solutions and therefore $\lambda=0$ is an eigenvalue of A. To find the corresponding eigenspace, observe that the system in (9) is equivalent to the equation

$$x_1 - 2x_2 = 0,$$

which has solutions

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = t \left(\begin{array}{c} 2 \\ 1 \end{array}\right).$$

Thus, the eigenspace of A associated with $\lambda = 0$ is

$$E_A(0) = \operatorname{span}\left\{ \begin{pmatrix} 2\\1 \end{pmatrix} \right\}.$$

Therefore, $\dim(E_A(0)) = 1$.

5. Use the fact that det(AB) = det(A) det(B) for all $A, B \in M(n, n)$ to compute $det(A^{-1})$, provided that A is invertible.

Proof: Assume that A is invertible with inverse A^{-1} . Then,

$$A^{-1}A = I,$$

where I is the $n \times n$ identity matrix. Taking determinants on both sides of the equation yields that

$$\det(A^{-1}A) = 1,$$

from which we get that

$$\det(A^{-1})\det(A) = 1.$$

This, since $det(A) \neq 0$ because A is invertible, we get that

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

6. Let A and B be $n \times n$ matrices. Show that if AB is invertible, then so is A.

Proof: Suppose that AB is invertible. Then, there exists an $n \times n$ matrix, C, such that

$$(AB)C = I,$$

where I is the $n \times n$ identity matrix. Thus, by associativity of matrix multiplication,

$$A(BC) = I,$$

which shows that A has a right–inverse and is therefore invertible. \Box

- 7. Let A be a 3×3 matrix satisfying $A^3 6A^2 2A + 12I = O$, where I is the 3×3 identity matrix and O is the 3×3 zero matrix.
 - (a) Prove that A is invertible and given a formula for computing its inverse in terms of I, A and A^2 .

Solution: We can solve the equation $A^3 - 6A^2 - 2A + 12I = O$ for 12I and then divide by 12 to get that

$$A\left(\frac{1}{6}I + \frac{1}{2}A - \frac{1}{12}A^2\right) = I,$$

which shows that A has a right–inverse and is therefore invertible with

$$A^{-1} = \frac{1}{6}I + \frac{1}{2}A - \frac{1}{12}A^2.$$

(b) Prove that if λ is an eigenvalue of A, then $\lambda^3 - 6\lambda^2 - 2\lambda + 12 = 0$. Deduce therefore that λ is one of 6, $\sqrt{2}$ or $-\sqrt{2}$.

Proof: Let λ be an eigenvalue of A. Then, there exists a nonzero vector, v, in \mathbb{R}^3 such that

$$Av = \lambda v$$
.

Multiplying on both sides by A we then get that

$$A^2v = \lambda Av = \lambda(\lambda v) = \lambda^2 v.$$

Multiplying the last equation by A we then get that

$$A^3v = \lambda^3v.$$

Thus, applying $A^3 - 6A^2 - 2A + 12I = O$ to to v we get that

$$(A^3 - 6A^2 - 2A + 12I)v = Ov,$$

which, by the distributive property, implies that

$$A^3v - 6A^2v - 2Av + 12v = \mathbf{0}.$$

Thus,

$$\lambda^3 v - 6\lambda^2 v - 2\lambda v + 12v = \mathbf{0}.$$

or

$$(\lambda^3 - 6\lambda^2 - 2\lambda + 12)v = \mathbf{0},$$

from which we get that

$$\lambda^3 - 6\lambda^2 - 2\lambda + 12 = 0.$$

since v is nonzero.

Observe that $\lambda^3 - 6\lambda^2 - 2\lambda + 12$ factors into $(\lambda - 6)(\lambda + \sqrt{2})(\lambda - \sqrt{2})$.

8. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(v) = Av for all $v \in \mathbb{R}^2$, where A is a 2×2 matrix. Let area $(P(v_1, v_2))$ denote the area of the parallelogram determined by the vectors v_1 and v_2 . Prove that

$$area(P(T(v_1), T(v_2))) = |\det(A)| \cdot area(P(v_1, v_2)).$$

Solution: Observe that the matrix $[T(v_1) \ T(v_2)] = [Av_1 \ Av_2]$ can be written as

$$[T(v_1) \ T(v_2)] = A[v_1 \ v_2],$$

by the definition of the matrix product. Thus, taking the determinant on both sides we have

$$\det([T(v_1) \ T(v_2)]) = \det(A[v_1 \ v_2])$$
$$= \det(A)\det([v_1 \ v_2]).$$

Thus, taking the absolute value on both sides,

$$\operatorname{area}(P(T(v_1), T(v_2))) = |\det(A)| \cdot \operatorname{area}(P(v_1, v_2)).$$