Review Problems for Final Exam

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that T is singular if and only if $\lambda=0$ is an eigenvalue of T.
2. Let B be an $n \times n$ matrix satisfying $B^{3}=0$ and put $A=I+B$, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^{2}.
3. Let $A=\left(\begin{array}{ll}1 / 2 & 1 / 3 \\ 1 / 2 & 2 / 3\end{array}\right)$.
(a) Find a basis for \mathbb{R}^{2} made up of eigenvectors of A.
(b) Let Q be the 2×2 matrix $Q=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$, where $\left\{v_{1}, v_{2}\right\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1} A Q$. What do you discover?
(c) Use the result in part (b) above to find a formula for for computing A^{k} for every positive integer k. Can you say anything about $\lim _{k \rightarrow \infty} A^{k}$?
4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. Prove that if $A x=b$ has a solution x in \mathbb{R}^{n}, then $\langle b, v\rangle=0$ for every v is the null space of A^{T}.
5. Let A be an $m \times n$ matrix. Prove that if A^{T} is nonsingular, then $A x=b$ has a solution x in \mathbb{R}^{n} for every $b \in \mathbb{R}^{n}$.
6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^{k} is an eigenvalue of T^{k} for every positive integer k. If μ is an eigenvalue of T^{k}, is $\mu^{1 / k}$ always and eigenvalue of T ?
7. Let $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ denote the standard basis in \mathbb{R}^{2}, and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function satisfying: $f\left(e_{1}\right)=e_{1}+e_{2}$ and $f\left(e_{2}\right)=2 e_{1}-e_{2}$.
Give the matrix representation for f and $f \circ f$ relative to \mathcal{E}.
8. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as follows: Each vector $v \in \mathbb{R}^{2}$ is reflected across the y-axis, and then doubled in length to yield $f(v)$.
Verify that f is linear and determine the matrix representation, M_{f}, for f relative to the standard basis in \mathbb{R}^{2}.
9. Find a 2×2 matrix A such that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=A v$ maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^{2}, to its coordinates relative the basis $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$.
