Review Problems for Final Exam

- 1. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Prove that T is singular if and only if $\lambda = 0$ is an eigenvalue of T.
- 2. Let B be an $n \times n$ matrix satisfying $B^3 = 0$ and put A = I + B, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^2 .

3. Let
$$A = \begin{pmatrix} 1/2 & 1/3 \\ 1/2 & 2/3 \end{pmatrix}$$
.

- (a) Find a basis for \mathbb{R}^2 made up of eigenvectors of A.
- (b) Let Q be the 2 × 2 matrix $Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, where $\{v_1, v_2\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1}AQ$. What do you discover?
- (c) Use the result in part (b) above to find a formula for for computing A^k for every positive integer k. Can you say anything about $\lim A^k$?
- 4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. Prove that if Ax = b has a solution x in \mathbb{R}^n , then $\langle b, v \rangle = 0$ for every v is the null space of A^T .
- 5. Let A be an $m \times n$ matrix. Prove that if A^T is nonsingular, then Ax = b has a solution x in \mathbb{R}^n for every $b \in \mathbb{R}^n$.
- 6. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^k is an eigenvalue of T^k for every positive integer k. If μ is an eigenvalue of T^k , is $\mu^{1/k}$ always and eigenvalue of T?
- 7. Let $\mathcal{E} = \{e_1, e_2\}$ denote the standard basis in \mathbb{R}^2 , and let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear function satisfying: $f(e_1) = e_1 + e_2$ and $f(e_2) = 2e_1 e_2$. Give the matrix representation for f and $f \circ f$ relative to \mathcal{E} .
- 8. A function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined as follows: Each vector $v \in \mathbb{R}^2$ is reflected across the *y*-axis, and then doubled in length to yield f(v). Verify that f is linear and determine the matrix representation, M_f , for frelative to the standard basis in \mathbb{R}^2 .
- 9. Find a 2 × 2 matrix A such that the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(v) = Av maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^2 , to its coordinates relative the basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.