Solutions Review Problems for Final Exam

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that T is singular if and only if $\lambda=0$ is an eigenvalue of T.

Solution: T is singular if and only if

$$
T(v)=\mathbf{0}
$$

has nontrivial solutions; thus, T is singular if and only if

$$
T(v)=0 v
$$

has nontrivial solutions. Consequently, T is singular if and only if $\lambda=0$ is an eigenvalue of T.
2. Let B be an $n \times n$ matrix satisfying $B^{3}=O$ and put $A=I+B$, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^{2}.

Solution: Consider the matrix $Q=c_{1} I+c_{2} B+c_{3} B^{2}$ and look for scalars c_{1}, c_{2} and c_{3} such that $A Q=I$.
Now,

$$
\begin{aligned}
A Q & =(I+B) Q \\
& =c_{1} I+c_{2} B+c_{3} B^{2}+B\left(c_{1} I+c_{2} B+c_{3} B^{2}\right) \\
& =c_{1} I+c_{2} B+c_{3} B^{2}+c_{1} B+c_{2} B^{2}+c_{3} B^{3} \\
& =c_{1} I+\left(c_{1}+c_{2}\right) B+\left(c_{2}+c_{3}\right) B^{2},
\end{aligned}
$$

since $B^{3}=O$. Thus, $A Q=I$ if and only if

$$
\begin{cases}c_{1} & =1 \\ c_{1}+c_{2} & =0 \\ c_{2}+c_{3} & =0\end{cases}
$$

Solving this system we get $c_{1}=1, c_{2}=-1$ and $c_{3}=1$. Hence, if $Q=I-B+B^{2}$, then Q is a right-inverse of $A=I+B$ and therefore $A=I+B$ is invertible and $A^{-1}=I-B+B^{2}$.
3. Let $A=\left(\begin{array}{ll}1 / 2 & 1 / 3 \\ 1 / 2 & 2 / 3\end{array}\right)$.
(a) Find a basis for \mathbb{R}^{2} made up of eigenvectors of A.

Solution: First, we look for values of λ such that the system

$$
\begin{equation*}
(A-\lambda I) v=\mathbf{0} \tag{1}
\end{equation*}
$$

has nontrivial solutions in \mathbb{R}^{2}. This is the case if and only if $\operatorname{det}(A-\lambda I)=0$, which occurs if and only if

$$
\lambda^{2}-\frac{7}{6} \lambda+\frac{1}{6}=0,
$$

or

$$
(\lambda-1)\left(\lambda-\frac{1}{6}\right)=0
$$

We then get that

$$
\lambda_{1}=\frac{1}{6} \quad \text { and } \quad \lambda_{2}=1
$$

are eigenvalues of A.
To find an eigenvector corresponding to the eigenvalue λ_{1}, we solve the system in (1) for $\lambda=\lambda_{1}$. In this case, the system can be reduced to the equation

$$
x_{1}+x_{2}=0
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{1}{-1},
$$

where t is arbitrary. We can therefore take

$$
v_{1}=\binom{1}{-1}
$$

as an eigenvector corresponding to $\lambda=\frac{1}{6}$.
Similar calculations for $\lambda=\lambda_{2}=1$ lead to the equation

$$
3 x_{1}-2 x_{2}=0,
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{2}{3}
$$

where t is arbitrary. Thus, in this case, we obtain the eigenvector

$$
v_{2}=\binom{2}{3}
$$

Since v_{1} and v_{2} are linearly independent, the constitute a basis for \mathbb{R}^{2} because $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
(b) Let Q be the 2×2 matrix $Q=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$, where $\left\{v_{1}, v_{2}\right\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1} A Q$. What do you discover?

Solution: $Q=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$, so that $\operatorname{det}(Q)=3+2=5 \neq 0$.
Hence Q is invertible and

$$
Q^{-1}=\frac{1}{5}\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right)
$$

Next, compute

$$
\begin{aligned}
Q^{-1} A Q & =\frac{1}{5}\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 / 6 & 2 \\
-1 / 6 & 3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
5 / 6 & 0 \\
0 & 5
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / 6 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) .
\end{aligned}
$$

Thus, $Q^{-1} A Q$ is a diagonal matrix with the eigenvalues as entries along the main diagonal.
(c) Use the result in part (b) above to find a formula for for computing A^{k} for every positive integer k. Can you say anything about $\lim _{k \rightarrow \infty} A^{k}$?

Solution: Let D denote the matrix $\left(\begin{array}{rr}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$. Then, from part (b) in this problem,

$$
Q^{-1} A Q=D
$$

Multiplying this equation by Q on the left and Q^{-1} on the right, we obtain that

$$
A=Q D Q^{-1}
$$

It then follows that

$$
\begin{aligned}
A^{2} & =\left(Q D Q^{-1}\right)\left(Q D Q^{-1}\right) \\
& =Q D\left(Q^{-1} Q\right) D Q^{-1} \\
& =Q D I D Q^{-1} \\
& =Q D^{2} Q^{-1} .
\end{aligned}
$$

We may now proceed by induction on k to show that

$$
A^{k}=Q D^{k} Q^{-1} \quad \text { for all } k=1,2,3, \ldots
$$

In fact, once we have established that

$$
A^{k-1}=Q D^{k-1} Q^{-1}
$$

we compute

$$
\begin{aligned}
A^{k} & =A A^{k-1} \\
& =\left(Q D Q^{-1}\right)\left(Q D^{k-1} Q^{-1}\right) \\
& =Q D\left(Q^{-1} Q\right) D^{k-1} Q^{-1} \\
& =Q D I D^{k-1} Q^{-1} \\
& =Q D^{k} Q^{-1} .
\end{aligned}
$$

Thus, we may compute A^{k} as follows

$$
\begin{aligned}
A^{k} & =Q D^{k} Q^{-1} \\
& =\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)^{k} \frac{1}{5}\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right)\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 / 6^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
3 / 6^{k} & -2 / 6^{k} \\
1 & 1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{r}
\left(3 / 6^{k}\right)+2 \\
-\left(3 / 6^{k}\right)+3 \\
-\left(2 / 6^{k}\right)+2 \\
\left(2 / 6^{k}\right)+3
\end{array}\right)
\end{aligned}
$$

Observe that, as $k \rightarrow \infty$,

$$
A^{k} \rightarrow\left(\begin{array}{ll}
2 / 5 & 2 / 5 \\
3 / 5 & 3 / 5
\end{array}\right)
$$

4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. Prove that if $A x=b$ has a solution x in \mathbb{R}^{n}, then $\langle b, v\rangle=0$ for every v is the null space of A^{T}.

Solution: Let x be a solution of $A x=b$ and $v \in \mathcal{N}_{A^{T}}$. Then, $A^{T} v=0$ and

$$
\begin{aligned}
\langle b, v\rangle & =\langle A x, v\rangle \\
& =(A x)^{T} v \\
& =x^{T} A^{T} v \\
& =x^{T} \mathbf{0} \\
& =0 .
\end{aligned}
$$

5. Let A be an $m \times n$ matrix. Prove that if A^{T} is nonsingular, then $A x=b$ has a solution x in \mathbb{R}^{n} for every $b \in \mathbb{R}^{n}$.

Solution: If A^{T} is nonsingular, then the null-space, $\mathcal{N}_{A^{T}}$, is the trivial subspace, $\{\mathbf{0}\}$, of \mathbb{R}^{m}. Consequently, $\operatorname{dim}\left(\mathcal{N}_{A^{T}}\right)=0$. Thus, by the Dimension Theorem for Matrices, the rank of A^{T} is m, since $A^{T} \in \mathbb{M}(n, m)$. Thus, since the rank of A^{T} is the same as the rank of A, by the equality of the column and row ranks, it follows that $A \in \mathbb{M}(m, n)$ has rank m. In other words, the dimension of the column space of A is m. Thus, since the column space of A, \mathcal{C}_{A}, is a subspace of \mathbb{R}^{m}, it follows that

$$
\mathcal{C}_{A}=\mathbb{R}^{m} .
$$

Therefore, if $A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$, where $v_{1}, v_{2}, \ldots, v_{n}$ are the columns of A, then for any $b \in \mathbb{R}^{m}$, there exist scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=b
$$

or

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=b
$$

which implies that the system

$$
A x=b
$$

has a solution.
6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^{k} is an eigenvalue of T^{k} for every positive integer k. If μ is an eigenvalue of T^{k}, is $\mu^{1 / k}$ always and eigenvalue of T ?

Solution: Let λ be an eigenvalue of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then, there exists a nonzero vector, v, in \mathbb{R}^{n} such that

$$
T(v)=\lambda v
$$

Applying the transformation, T, on both sides and using the fact that T is linear and that v is an eigenvector corresponding to λ, we obtain that

$$
T^{2}(v)=T(\lambda v)=\lambda T(v)=\lambda \lambda v=\lambda^{2} v
$$

so that, since $v \neq \mathbf{0}, \lambda^{2}$ is an eigenvalue for T^{2}.
We may now proceed by induction on k to show that

$$
\lambda^{k}, \quad \text { for all } k=1,2,3, \ldots,
$$

is an eigenvalue of T^{k}. To do this, assume we have established that λ^{k-1} is an eigenvalue of T^{k-1} and that v is an eigenvector for T corresponding to the eigenvalue λ, so that v is also an eigenvector of T^{k-1} corresponding to λ^{k-1}. We then have that

$$
T^{k-1}(v)=\lambda^{k-1} v
$$

Thus, applying the transformation, T, on both sides and using the fact that T is linear and that v is an eigenvector corresponding to λ, we obtain that

$$
T^{k}(v)=T\left(T^{k-1} v\right)=T\left(\lambda^{k-1} v\right)=\lambda^{k-1} T(v)=\lambda^{k-1} \lambda v=\lambda^{k} v
$$

so that, since $v \neq \mathbf{0}, \lambda^{k}$ is an eigenvalue for T^{k}.
Next, consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by rotation in the counterclockwise sense by 90° or $\pi / 2$ radians; that is,

$$
T\binom{x}{y}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y} \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

Then, $T^{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
T^{2}\binom{x}{y}=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y} \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

which has $\mu=-1$ as the only eigenvalue. Observe that T has no real eigenvalues, so $\mu^{1 / 2}$ cannot be a (real) eigenvalue of T.
7. Let $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ denote the standard basis in \mathbb{R}^{2}, and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function satisfying: $f\left(e_{1}\right)=e_{1}+e_{2}$ and $f\left(e_{2}\right)=2 e_{1}-e_{2}$.
Give the matrix representation for f and $f \circ f$ relative to \mathcal{E}.
Solution: Observe that

$$
f\left(e_{1}\right)=\binom{1}{1} \quad \text { and } \quad f\left(e_{2}\right)=\binom{2}{-1} .
$$

It then follows that the matrix representation for f relative to \mathcal{E} is

$$
M_{f}=\left(\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right)
$$

The matrix representation of $f \circ f$ is the product $M_{f} M_{f}$, or

$$
M_{f \circ f}=\left(\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) .
$$

8. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as follows: Each vector $v \in \mathbb{R}^{2}$ is reflected across the y-axis, and then doubled in length to yield $f(v)$.
Verify that f is linear and determine the matrix representation, M_{f}, for f relative to the standard basis in \mathbb{R}^{2}.

Solution: The function f is the composition of the reflection $R: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} given by

$$
R\binom{x}{y}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2},
$$

and the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(w)=2 w$ for all $w \in \mathbb{R}^{2}$ or, in matrix form,

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{x}{y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} .
$$

Note that both R and T are linear since they are both defined in terms of multiplication by matrix. It then follows that $f=T \circ R$ is linear and its matrix representation, M_{f}, relative to the standard basis in \mathbb{R}^{2} is

$$
M_{f}=M_{T} M_{R}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
-2 & 0 \\
0 & 2
\end{array}\right)
$$

9. Find a 2×2 matrix A such that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=A v$ maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^{2}, to its coordinates relative the basis $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$.

Solution: Denote the vectors in \mathcal{B} by v_{1} and v_{2}, respectively, so that

$$
v_{1}=\binom{1}{1} \quad \text { and } \quad v_{2}=\binom{1}{-1} .
$$

We want the function T to satisfy

$$
T(v)=[v]_{\mathcal{B}}
$$

for every $v \in \mathbb{R}^{2}$ given in terms of the standard basis in \mathbb{R}^{2}. We want T to be linear, so that all we need to know about T is what it does to the standard basis; that is, we need to know $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$. To find out what $T\left(e_{1}\right)$ is, we need to find scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=e_{1}
$$

. That is, we need to solve the system

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=e_{1}
$$

which we can solve by multiplying by the inverse of the matrix on the left:

$$
\binom{c_{1}}{c_{2}}=\frac{1}{-2}\left(\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right) e_{1}=\binom{1 / 2}{1 / 2}
$$

so that

$$
T\left(e_{1}\right)=\binom{1 / 2}{1 / 2}
$$

Similarly,

$$
T\left(e_{2}\right)=\binom{1 / 2}{-1 / 2}
$$

It then follows that

$$
A=\left(\begin{array}{rr}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right)
$$

