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Solutions Review Problems for Final Exam

1. Let T : Rn → Rn be a linear transformation. Prove that T is singular if and
only if λ = 0 is an eigenvalue of T .

Solution: T is singular if and only if

T (v) = 0

has nontrivial solutions; thus, T is singular if and only if

T (v) = 0v

has nontrivial solutions. Consequently, T is singular if and only if
λ = 0 is an eigenvalue of T . �

2. Let B be an n × n matrix satisfying B3 = O and put A = I + B, where I
denotes the n× n identity matrix. Prove that A is invertible and compute A−1

in terms of I, B and B2.

Solution: Consider the matrix Q = c1I + c2B + c3B
2 and look for

scalars c1, c2 and c3 such that AQ = I.

Now,

AQ = (I +B)Q

= c1I + c2B + c3B
2 +B(c1I + c2B + c3B

2)

= c1I + c2B + c3B
2 + c1B + c2B

2 + c3B
3

= c1I + (c1 + c2)B + (c2 + c3)B
2,

since B3 = O. Thus, AQ = I if and only if
c1 = 1
c1 + c2 = 0
c2 + c3 = 0.

Solving this system we get c1 = 1, c2 = −1 and c3 = 1. Hence, if
Q = I−B+B2, then Q is a right–inverse of A = I+B and therefore
A = I +B is invertible and A−1 = I −B +B2. �
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3. Let A =

(
1/2 1/3
1/2 2/3

)
.

(a) Find a basis for R2 made up of eigenvectors of A.

Solution: First, we look for values of λ such that the system

(A− λI)v = 0 (1)

has nontrivial solutions in R2. This is the case if and only if
det(A− λI) = 0, which occurs if and only if

λ2 − 7

6
λ+

1

6
= 0,

or

(λ− 1)

(
λ− 1

6

)
= 0.

We then get that

λ1 =
1

6
and λ2 = 1

are eigenvalues of A.
To find an eigenvector corresponding to the eigenvalue λ1, we
solve the system in (1) for λ = λ1. In this case, the system can
be reduced to the equation

x1 + x2 = 0,

which has solutions (
x1

x2

)
= t

(
1
−1

)
,

where t is arbitrary. We can therefore take

v1 =

(
1
−1

)

as an eigenvector corresponding to λ =
1

6
.

Similar calculations for λ = λ2 = 1 lead to the equation

3x1 − 2x2 = 0,
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which has solutions (
x1

x2

)
= t

(
2
3

)
,

where t is arbitrary. Thus, in this case, we obtain the eigenvector

v2 =

(
2
3

)
.

Since v1 and v2 are linearly independent, the constitute a basis for
R2 because dim(R2) = 2. �

(b) Let Q be the 2 × 2 matrix Q = [ v1 v2 ], where {v1, v2} is the basis of
eigenvectors found in (a) above. Verify that Q is invertible and compute
Q−1AQ. What do you discover?

Solution: Q =

(
1 2
−1 3

)
, so that det(Q) = 3 + 2 = 5 6= 0.

Hence Q is invertible and

Q−1 =
1

5

(
3 −2
1 1

)
.

Next, compute

Q−1AQ =
1

5

(
3 −2
1 1

)(
1/2 1/3
1/2 2/3

)(
1 2
−1 3

)

=
1

5

(
3 −2
1 1

)(
1/6 2
−1/6 3

)

=
1

5

(
5/6 0
0 5

)

=

(
1/6 0
0 1

)

=

(
λ1 0
0 λ2

)
.

Thus, Q−1AQ is a diagonal matrix with the eigenvalues as entries
along the main diagonal. �
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(c) Use the result in part (b) above to find a formula for for computing Ak for
every positive integer k. Can you say anything about lim

k→∞
Ak?

Solution: Let D denote the matrix

(
λ1 0
0 λ2

)
. Then, from

part (b) in this problem,

Q−1AQ = D.

Multiplying this equation by Q on the left and Q−1 on the right,
we obtain that

A = QDQ−1.

It then follows that

A2 = (QDQ−1)(QDQ−1)

= QD(Q−1Q)DQ−1

= QDIDQ−1

= QD2Q−1.

We may now proceed by induction on k to show that

Ak = QDkQ−1 for all k = 1, 2, 3, . . .

In fact, once we have established that

Ak−1 = QDk−1Q−1,

we compute

Ak = AAk−1

= (QDQ−1)(QDk−1Q−1)

= QD(Q−1Q)Dk−1Q−1

= QDIDk−1Q−1

= QDkQ−1.
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Thus, we may compute Ak as follows

Ak = QDkQ−1

=

(
1 2
−1 3

)(
λ1 0
0 λ2

)k
1

5

(
3 −2
1 1

)

=
1

5

(
1 2
−1 3

)(
λk

1 0
0 λk

2

)(
3 −2
1 1

)

=
1

5

(
1 2
−1 3

)(
1/6k 0

0 1

)(
3 −2
1 1

)

=
1

5

(
1 2
−1 3

)(
3/6k −2/6k

1 1

)

=
1

5

(
(3/6k) + 2 −(2/6k) + 2
−(3/6k) + 3 (2/6k) + 3

)

.

Observe that, as k →∞,

Ak →
(

2/5 2/5
3/5 3/5

)
.

�

4. Let A be an m × n matrix and b ∈ Rm. Prove that if Ax = b has a solution x
in Rn, then 〈b, v〉 = 0 for every v is the null space of AT .

Solution: Let x be a solution of Ax = b and v ∈ NAT . Then,
ATv = 0 and

〈b, v〉 = 〈Ax, v〉

= (Ax)Tv

= xTATv

= xT0

= 0.

�
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5. Let A be an m× n matrix. Prove that if AT is nonsingular, then Ax = b has a
solution x in Rn for every b ∈ Rn.

Solution: If AT is nonsingular, then the null–space, NAT , is the
trivial subspace, {0}, of Rm. Consequently, dim(NAT ) = 0. Thus,
by the Dimension Theorem for Matrices, the rank of AT is m, since
AT ∈ M(n,m). Thus, since the rank of AT is the same as the rank
of A, by the equality of the column and row ranks, it follows that
A ∈ M(m,n) has rank m. In other words, the dimension of the
column space of A is m. Thus, since the column space of A, CA, is a
subspace of Rm, it follows that

CA = Rm.

Therefore, if A = [ v1 v2 · · · vn ], where v1, v2, . . . , vn are the
columns of A , then for any b ∈ Rm, there exist scalars c1, c2, . . . , cn
such that

c1v1 + c2v2 + · · ·+ cnvn = b,

or

[ v1 v2 · · · vn ]


c1
c2
...
cn

 = b,

which implies that the system

Ax = b

has a solution. �

6. Let T : Rn → Rn denote a linear transformation. Prove that if λ is an eigenvalue
of T , then λk is an eigenvalue of T k for every positive integer k. If µ is an
eigenvalue of T k, is µ1/k always and eigenvalue of T?

Solution: Let λ be an eigenvalue of T : Rn → Rn. Then, there exists
a nonzero vector, v, in Rn such that

T (v) = λv.

Applying the transformation, T , on both sides and using the fact that
T is linear and that v is an eigenvector corresponding to λ, we obtain
that

T 2(v) = T (λv) = λT (v) = λλv = λ2v,
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so that, since v 6= 0, λ2 is an eigenvalue for T 2.

We may now proceed by induction on k to show that

λk, for all k = 1, 2, 3, . . . ,

is an eigenvalue of T k. To do this, assume we have established that
λk−1 is an eigenvalue of T k−1 and that v is an eigenvector for T corre-
sponding to the eigenvalue λ, so that v is also an eigenvector of T k−1

corresponding to λk−1. We then have that

T k−1(v) = λk−1v.

Thus, applying the transformation, T , on both sides and using the
fact that T is linear and that v is an eigenvector corresponding to λ,
we obtain that

T k(v) = T (T k−1v) = T (λk−1v) = λk−1T (v) = λk−1λv = λkv,

so that, since v 6= 0, λk is an eigenvalue for T k.

Next, consider the function T : R2 → R2 given by rotation in the
counterclockwise sense by 90◦ or π/2 radians; that is,

T

(
x
y

)
=

(
0 −1
1 0

)(
x
y

)
for all

(
x
y

)
∈ R2.

Then, T 2 : R2 → R2 is given by

T 2

(
x
y

)
=

(
−1 0

0 −1

)(
x
y

)
for all

(
x
y

)
∈ R2,

which has µ = −1 as the only eigenvalue. Observe that T has no real
eigenvalues, so µ1/2 cannot be a (real) eigenvalue of T . �

7. Let E = {e1, e2} denote the standard basis in R2, and let f : R2 → R2 be a
linear function satisfying: f(e1) = e1 + e2 and f(e2) = 2e1 − e2.
Give the matrix representation for f and f ◦ f relative to E .

Solution: Observe that

f(e1) =

(
1
1

)
and f(e2) =

(
2
−1

)
.
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It then follows that the matrix representation for f relative to E is

Mf =

(
1 2
1 −1

)
.

The matrix representation of f ◦ f is the product MfMf , or

Mf◦f =

(
1 2
1 −1

)(
1 2
1 −1

)
=

(
3 0
0 3

)
.

�

8. A function f : R2 → R2 is defined as follows: Each vector v ∈ R2 is reflected
across the y–axis, and then doubled in length to yield f(v).

Verify that f is linear and determine the matrix representation, Mf , for f
relative to the standard basis in R2.

Solution: The function f is the composition of the reflectionR : R2 →
R2 given by

R

(
x
y

)
=

(
−1 0

0 1

)(
x
y

)
, for all

(
x
y

)
∈ R2,

and the function T : R2 → R2 given by T (w) = 2w for all w ∈ R2 or,
in matrix form,

T

(
x
y

)
=

(
2 0
0 2

)(
x
y

)
, for all

(
x
y

)
∈ R2.

Note that both R and T are linear since they are both defined in
terms of multiplication by matrix. It then follows that f = T ◦ R
is linear and its matrix representation, Mf , relative to the standard
basis in R2 is

Mf = MTMR =

(
2 0
0 2

)(
−1 0

0 1

)
=

(
−2 0

0 2

)
�

9. Find a 2× 2 matrix A such that the function T : R2 → R2 given by T (v) = Av
maps the coordinates of any vector, relative to the standard basis in R2, to its

coordinates relative the basis B =

{(
1
1

)
,

(
1
−1

)}
.
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Solution: Denote the vectors in B by v1 and v2, respectively, so that

v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

We want the function T to satisfy

T (v) = [v]B

for every v ∈ R2 given in terms of the standard basis in R2. We want
T to be linear, so that all we need to know about T is what it does
to the standard basis; that is, we need to know T (e1) and T (e2). To
find out what T (e1) is, we need to find scalars c1 and c2 such that

c1v1 + c2v2 = e1

. That is, we need to solve the system(
1 1
1 −1

)(
c1
c2

)
= e1,

which we can solve by multiplying by the inverse of the matrix on the
left: (

c1
c2

)
=

1

−2

(
−1 −1
−1 1

)
e1 =

(
1/2
1/2

)
,

so that

T (e1) =

(
1/2
1/2

)
.

Similarly,

T (e2) =

(
1/2
−1/2

)
.

It then follows that

A =

(
1/2 1/2
1/2 −1/2

)
.

�


