Assignment #10

Due on Wednesday, March 10, 2010

Read Handout #2 on The Real Numbers System Axioms.

Read Section 4.6 on Ordered Fields on pp. 63–66 in Schramm's text.

Read Chapter 5 on Upper Bounds and Suprema, pp. 80–85, in Schramm's text.

Read Section 6.1 on *The Archimedean Property*, pp. 89–91, in Schramm's text.

Do the following problems

1. For real numbers a and b with a < b, let (a, b) denote the open interval from a to b:

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}.$$

A subset, D, of the real numbers is said to be **dense** in \mathbb{R} if and only if for every open interval, (a, b),

 $(a,b) \cap D \neq \emptyset;$

that is, the intersection of any open interval with D is nonempty.

Use the fact that between any two distinct real numbers there exists a rational number to prove that \mathbb{Q} is dense in \mathbb{R} according to the definition given above.

- 2. Show that \mathbb{Z} is not dense in \mathbb{R} .
- 3. Let $a, b \in \mathbb{R}$ with a < b. Prove that the set $(a, b) \cap \mathbb{Q}$ is infinite.
- 4. Given sets A and B, the set of elements in A which are not in B is denoted by $A \setminus B$; that is,

$$A \setminus B = \{ x \in A \mid x \notin B \}.$$

Thus, for instance, the set $\mathbb{R} \setminus \mathbb{Q}$ is the set of irrational numbers. Prove that $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

- 5. Let $q \in \mathbb{Q}$ and α be an irrational number. Prove that
 - (a) if $q \neq 0$, then $q\alpha$ is irrational, and
 - (b) $q + \alpha$ is irrational for any $q \in \mathbb{Q}$.
 - (c) What can you say about α^q ?