Assignment \#13

Due on Monday, April 12, 2010

Do the following problems.

1. Let $\left(x_{n}\right)$ denote a sequence of real numbers and $\left(x_{n_{k}}\right)$ denote a subsequence of $\left(x_{n}\right)$.
(a) Prove that if $\left(x_{n}\right)$ converges then $\left(x_{n_{k}}\right)$ converges.
(b) Show that the converse of the statement proved in part (a) is not true.

In Problems 2-5, you will prove the Binomial Theorem: for any $a, b \in \mathbb{R}$,

$$
\begin{equation*}
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \tag{1}
\end{equation*}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}, \text { for } k=0,1,2, \ldots, n
$$

are called the binomial coefficients.
2. Use the formula $(k+1)!=(k+1) \cdot k$! to establish that $0!=1$, and compute $\binom{m}{0}$ and $\binom{m}{m}$ for all $m \in \mathbb{N}$.
3. Prove that $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$ for all $n \in \mathbb{N}$ and all $k=1, \ldots, n$.
4. Use induction to prove that, for any real number, x,

$$
\begin{equation*}
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \tag{2}
\end{equation*}
$$

5. Use the expansion in (2) to deduce the expansion in (1) for any real numbers a and b.
