Assignment #14

Due on Wednesday, April 14, 2010

Do the following problems.

- 1. Let $x_n = \frac{1}{\sqrt{n-1}}$ for $n \ge 2$. Show that (x_n) converges and compute its limit.
- 2. Let (x_n) be a sequence of real numbers satisfying $x_n \ge 0$ for all $n \in \mathbb{N}$ and define $y_n = \sqrt{x_n}$ for all $n \in \mathbb{N}$. Suppose that (x_n) converges to 0. Prove that the sequence (y_n) converges and compute its limit.
- 3. Let a > 0 and define $x_n = a^{1/n}$ for all $n \in \mathbb{N}$. In this problem and the next you will prove that $\lim_{n \to \infty} x_n = 1$.

First, assume that a > 1.

- (a) Prove that $x_n > 1$ for all $n \in \mathbb{N}$.
- (b) Put $y_n = x_n 1$ for all $n \in \mathbb{N}$. Then $a = (1 + y_n)^n$ for all $n \in \mathbb{N}$. Apply the Binomial Theorem to show that

$$a > ny_n \quad \text{for all } n \in \mathbb{N}.$$
 (1)

- (c) Use the inequality in (1) to prove that (y_n) converges to 0. Deduce that (x_n) converges to 1.
- (d) Prove that if a > 1, then $\lim_{n \to \infty} a^{1/n} = 1$.
- 4. Prove that for any positive real number, a, $\lim_{n \to \infty} a^{1/n} = 1$.
- 5. In this problem you will prove that $\lim_{n \to \infty} n^{1/n} = 1$.
 - (a) Set $y_n = n^{1/n} 1$ and note that $n = (1 + y_n)^n$. Use the Binomial Theorem to show that

$$n > \frac{n(n-1)}{2} y_n^2 \quad \text{for all } n \ge 2.$$
(2)

- (b) Use the inequality in (2) to prove that (y_n) converges and compute its limit.
- (c) Deduce that $\lim_{n \to \infty} n^{1/n} = 1$.