Assignment \#15

Due on Wednesday, April 21, 2010
Do the following problems.

1. Let m denote a natural number and define $x_{n}=\frac{1}{n^{m}}$ for all $n \in \mathbb{N}$. Prove that $\left(x_{n}\right)$ converges to 0 as $n \rightarrow \infty$.
2. Let q denote a positive rational number and define $x_{n}=\frac{1}{n^{q}}$ for all $n \in \mathbb{N}$. Prove that $\left(x_{n}\right)$ converges to 0 as $n \rightarrow \infty$.
3. Let $\left(x_{n}\right)$ denote a sequence of nonnegative real numbers. Suppose that $\left(x_{n}\right)$ converges to a as $n \rightarrow \infty$. Prove that $a \geqslant 0$ and that $\left(\sqrt{x_{n}}\right)$ converges to \sqrt{a}.
4. Let $x_{n}=\sqrt{\frac{n+1}{n}}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left(x_{n}\right)$ converges and compute its limit.
5. Let $x_{n}=\sqrt{n^{2}+n}-n$ for all $n \in \mathbb{N}$. Determine if the sequence $\left(x_{n}\right)$ converges or not. It it converges, compute its limit.
Suggestion: Consider the product $\left(\sqrt{n^{2}+n}+n\right) x_{n}$ for each $n \in \mathbb{N}$.
