Assignment #15

Due on Wednesday, April 21, 2010

Do the following problems.

- 1. Let *m* denote a natural number and define $x_n = \frac{1}{n^m}$ for all $n \in \mathbb{N}$. Prove that (x_n) converges to 0 as $n \to \infty$.
- 2. Let q denote a positive rational number and define $x_n = \frac{1}{n^q}$ for all $n \in \mathbb{N}$. Prove that (x_n) converges to 0 as $n \to \infty$.
- 3. Let (x_n) denote a sequence of nonnegative real numbers. Suppose that (x_n) converges to a as $n \to \infty$. Prove that $a \ge 0$ and that $(\sqrt{x_n})$ converges to \sqrt{a} .
- 4. Let $x_n = \sqrt{\frac{n+1}{n}}$ for all $n \in \mathbb{N}$. Prove that the sequence (x_n) converges and compute its limit.
- 5. Let $x_n = \sqrt{n^2 + n} n$ for all $n \in \mathbb{N}$. Determine if the sequence (x_n) converges or not. It it converges, compute its limit. Suggestion: Consider the product $(\sqrt{n^2 + n} + n)x_n$ for each $n \in \mathbb{N}$.