Assignment #16

Due on Monday, April 26, 2010

Do the following problems.

- 1. Let a > 0.
 - (a) Use the Principle of Mathematical Induction to show how to define a^n for all $n \in \mathbb{N}$.
 - (b) Prove that $a^{m+n} = a^m a^n$ for all $m, n \in \mathbb{N}$.
- 2. Let a > 0.
 - (a) Explain how to define a^0 and a^{-1} .
 - (b) For each $n \in \mathbb{Z}$, explain how to define a^n .
 - (c) Prove that $a^{m+n} = a^m a^n$ for all $m, n \in \mathbb{Z}$.
 - (d) Prove that $a^{m-n} = \frac{a^m}{a^n}$ for all $m, n \in \mathbb{Z}$.
- 3. Let a > 0 and $m \in \mathbb{N}$. Prove that the equation $x^m = a$ has a unique positive solution.
- 4. Let a > 0.
 - (a) Use the result of Problem 3 to explain how to define $a^{1/m}$ for $m \in \mathbb{N}$.
 - (b) Explain how to define $a^{n/m}$ for $m \in \mathbb{N}$ and $n \in \mathbb{Z}$.
 - (c) For rational numbers, q and r, prove that $a^{q+r} = a^q a^r$.
 - (d) For rational numbers, q and r, prove that $a^{q-r} = \frac{a^q}{a^r}$.
- 5. Suppose that a > 1.
 - (a) Let $n, m \in \mathbb{N}$. Prove that $m < n \Rightarrow a^m < a^n$.
 - (b) Let $n, m \in \mathbb{N}$. Prove that $m < n \Rightarrow a^{1/n} < a^{1/m}$.
 - (c) Let $q, r \in \mathbb{Q}$. Prove that $0 < q < r \Rightarrow a^q < a^r$.