## Assignment \#16

Due on Monday, April 26, 2010
Do the following problems.

1. Let $a>0$.
(a) Use the Principle of Mathematical Induction to show how to define $a^{n}$ for all $n \in \mathbb{N}$.
(b) Prove that $a^{m+n}=a^{m} a^{n}$ for all $m, n \in \mathbb{N}$.
2. Let $a>0$.
(a) Explain how to define $a^{0}$ and $a^{-1}$.
(b) For each $n \in \mathbb{Z}$, explain how to define $a^{n}$.
(c) Prove that $a^{m+n}=a^{m} a^{n}$ for all $m, n \in \mathbb{Z}$.
(d) Prove that $a^{m-n}=\frac{a^{m}}{a^{n}}$ for all $m, n \in \mathbb{Z}$.
3. Let $a>0$ and $m \in \mathbb{N}$. Prove that the equation $x^{m}=a$ has a unique positive solution.
4. Let $a>0$.
(a) Use the result of Problem 3 to explain how to define $a^{1 / m}$ for $m \in \mathbb{N}$.
(b) Explain how to define $a^{n / m}$ for $m \in \mathbb{N}$ and $n \in \mathbb{Z}$.
(c) For rational numbers, $q$ and $r$, prove that $a^{q+r}=a^{q} a^{r}$.
(d) For rational numbers, $q$ and $r$, prove that $a^{q-r}=\frac{a^{q}}{a^{r}}$.
5. Suppose that $a>1$.
(a) Let $n, m \in \mathbb{N}$. Prove that $m<n \Rightarrow a^{m}<a^{n}$.
(b) Let $n, m \in \mathbb{N}$. Prove that $m<n \Rightarrow a^{1 / n}<a^{1 / m}$.
(c) Let $q, r \in \mathbb{Q}$. Prove that $0<q<r \Rightarrow a^{q}<a^{r}$.
