Assignment #17

Due on Wednesday, April 28, 2010

Do the following problems.

In these problems we see how to define a^x , where a and x and real numbers with a > 0. You will need the results that you proved in Problems 4 and 5 of Assignment #16 and Problem 4 in Assignment #14.

- 1. Let $x \in \mathbb{R}$. Prove that there exists a decreasing sequence, (q_n) , of rational numbers which converges to x.
- 2. Let $x \ge 0$ and (q_n) be a sequence of rational numbers which decreased to x. For a > 1, define $y_n = a^{q_n}$ for all $n \in \mathbb{N}$. Prove that (y_n) converges by showing that (y_n) is monotone and bounded below.

Definition. For $x \ge 0$ and a > 1, we define a^x to be the limit of (a^{q_n}) as $n \to \infty$, where (q_n) is any sequence that decreases to x. By Problem 2, $\lim_{n\to\infty} a^{q_n}$ exists. Thus,

$$a^x = \lim_{n \to \infty} a^{q_n}.$$

For this definition to make sense, we must show that if (q_n) and (r_n) are any two sequences of rational numbers that decrease to x, then

$$\lim_{n \to \infty} a^{q_n} = \lim_{n \to \infty} a^{r_n}.$$

We will prove this fact in Problems 3 and 4.

3. Let a > 1 and (q_n) be a monotone sequence which converges to 0. Prove that

$$\lim_{n \to \infty} a^{q_n} = 1$$

Hint: Prove that there is a subsequence, (q_{n_k}) , of (q_n) such that

$$-\frac{1}{k} < q_{n_k} < \frac{1}{k} \quad \text{ for all } k \in \mathbb{N}.$$

Then, use the result of Problem 4 in Assignment #14.

Math 101. Rumbos

$$\lim_{n \to \infty} a^{q_n} = \lim_{n \to \infty} a^{r_n}$$

Hint: Consider $\frac{a^{q_n}}{a^{r_n}} = a^{q_n - r_n}$ and use the result of Problem 3.

- 5. Let a > 0 and $x \in \mathbb{R}$.
 - (a) Explain how to define a^x .
 - (b) For real numbers, x and y, prove that $a^{x+y} = a^x a^y$.
 - (c) For real numbers, x and y, prove that $a^{x-y} = \frac{a^x}{a^y}$.