Assignment \#2

Due on Monday, February 1, 2010
Read Section 4.3 on Well-Ordering and Induction on pp. 54-57 in Schramm's text.
Read Section 4.5 on Strong Induction on pp. 58-60 in Schramm's text.
Do the following problems

1. Let P, Q and R denote propositions. Use a truth-table to verify that the implication $P \Rightarrow(Q \vee R)$ is logically equivalent to $(P \wedge \neg Q) \Rightarrow R$.
2. Let m and n denote integers. Prove that if 2 divides $m n$, then either 2 divides m or 2 divides n.

Suggestion: Use the result of the previous problem and prove the implication: If 2 divides $m n$ and 2 does not divide m, then 2 divides n.
3. Use mathematical induction to prove that every non-empty subset of the natural numbers must have a smallest element.
Suggestion: Let A denote a non-empty subset of \mathbb{N}. We claim that A must have a smallest element. Argue by contradiction: Assume that A has no smallest element and let S denote the set of natural numbers that are not in A.
(a) Prove that $1 \in S$.
(b) Prove that $k \in S$ for all $k \in\{1,2, \ldots, n\}$ implies that $n+1 \in S$.
(c) Deduce that $S=\mathbb{N}$. Explain why this is a contradiction.
4. Find the smallest natural number that can be written as the sum of three prime numbers, but cannot be written as the sum of two prime numbers.
5. Let $m, n \in \mathbb{Z}$ with $0<m<n$. Define $S=\{n-k m \mid k \in \mathbb{Z}$ and $n-m k \geqslant 0\}$.
(a) Prove that S has a smallest element and call it r.
(b) Prove that $r \in\{0,1, \ldots m-1\}$.

Suggestion: Show that $r \geqslant m$ is impossible.
(c) Prove: Given positive integers, m and n, with $m<n$, there exist unique integers, q and r, such that,

$$
n=q m+r \quad \text { where } \quad r \in\{0,1, \ldots m-1\} .
$$

Note: This is a special case of the Division Algorithm.

