Assignment #2

Due on Monday, February 1, 2010

Read Section 4.3 on Well-Ordering and Induction on pp. 54–57 in Schramm's text. **Read** Section 4.5 on Strong Induction on pp. 58–60 in Schramm's text.

Do the following problems

- 1. Let P, Q and R denote propositions. Use a truth-table to verify that the implication $P \Rightarrow (Q \lor R)$ is logically equivalent to $(P \land \neg Q) \Rightarrow R$.
- 2. Let m and n denote integers. Prove that if 2 divides mn, then either 2 divides m or 2 divides n.

Suggestion: Use the result of the previous problem and prove the implication: If 2 divides mn and 2 does not divide m, then 2 divides n.

3. Use mathematical induction to prove that every non-empty subset of the natural numbers must have a smallest element.

Suggestion: Let A denote a non-empty subset of \mathbb{N} . We claim that A must have a smallest element. Argue by contradiction: Assume that A has no smallest element and let S denote the set of natural numbers that are not in A.

- (a) Prove that $1 \in S$.
- (b) Prove that $k \in S$ for all $k \in \{1, 2, ..., n\}$ implies that $n + 1 \in S$.
- (c) Deduce that $S = \mathbb{N}$. Explain why this is a contradiction.
- 4. Find the smallest natural number that can be written as the sum of three prime numbers, but cannot be written as the sum of two prime numbers.
- 5. Let $m, n \in \mathbb{Z}$ with 0 < m < n. Define $S = \{n km \mid k \in \mathbb{Z} \text{ and } n mk \ge 0\}$.
 - (a) Prove that S has a smallest element and call it r.
 - (b) Prove that $r \in \{0, 1, \dots m 1\}$. Suggestion: Show that $r \ge m$ is impossible.
 - (c) Prove: Given positive integers, m and n, with m < n, there exist unique integers, q and r, such that,

$$n = qm + r$$
 where $r \in \{0, 1, \dots m - 1\}.$

Note: This is a special case of the Division Algorithm.