Assignment \#3

Due on Wednesday, February 3, 2010
Read Handout \#2 on The Real Numbers System Axioms.
Read Section 3.1 on The Rules of Arithmetic on pp. 43-44 in Schramm's text.
Read Section 3.2 on Fields on pp. 44-46 in Schramm's text.
Do the following problems
Use the Field Axioms in Handout \#2 to prove the following:

1. Let x denote a real number satisfying $x^{2}=x$. Prove that either $x=0$ or $x=1$. (Note that $x^{2}=x x$.)
2. Let $a \in \mathbb{R}$. Prove that if $a \neq 0$, then the equation

$$
a x=b
$$

has a unique solution for every $b \in \mathbb{R}$.
3. Let $x \in \mathbb{R}$. Prove that $(-1) x$ is the additive inverse of x; that is $x+(-1) x=0$.
4. Prove that, for any real number, x,

$$
(-x)^{2}=x^{2}
$$

5. Let $a, b \in \mathbb{Q}$, where $a^{2}+b^{2} \neq 0$.
(a) Explain by $a^{2}-2 b^{2} \neq 0$.
(b) Show that the multiplicative inverse of $a+b \sqrt{2}$, namely $(a+b \sqrt{2})^{-1}$, is of the form $c+d \sqrt{2}$, where $c, d \in \mathbb{Q}$.
