Assignment \#9

Due on Monday, March 8, 2010
Read Handout \#2 on The Real Numbers System Axioms.
Read Section 4.6 on Ordered Fields on pp. 63-66 in Schramm's text.
Read Chapter 5 on Upper Bounds and Suprema, pp. 80-85, in Schramm's text.
Do the following problems

1. Let $a, b \in \mathbb{R}$. Show that if $a \leqslant b+\varepsilon>0$ for all $\varepsilon>0$, then $a \leqslant b$.
(Note that this problem is very similar to Problem 6 in Problem Set \#2, but it is not the same problem).
2. Let x denote a positive real number. Prove that $0<z<1$ implies that $z x<x$.
3. Let A be a non-empty and bounded subset of \mathbb{R}. Prove that

$$
\inf (A) \leqslant \sup (A)
$$

4. Let A and B be a non-empty subsets of \mathbb{R} which are bounded from above. Prove that if $\sup A<\sup B$, then there exists $b \in B$ such that b is an upper bound for A.
5. Use the fact that between any two distinct real numbers there is a rational number to prove the statement:
Between any two distinct real numbers there is at least an irrational number.
