Solutions to Exam 1 (Part II)

- 1. For a subset, A, of the real numbers and a real number, c, define the following sets
 - (i) $A + c = \{y \in \mathbb{R} \mid y = x + c \text{ where } x \in A\}$, and
 - (ii) $cA = \{y \in \mathbb{R} \mid y = cx \text{ where } x \in A\}.$

Prove the following statements.

(a) If A is non–empty and bounded above, then

$$\sup(A+c) = \sup A + c.$$

Proof: First, note that, since $A \neq \emptyset$, there exists $a \in A$. It then follows that $a + c \in A + c$, which shows that A + c is non-empty.

Next, observe that from the fact that A is bounded above we obtain that $\sup(A)$ exists, by the completeness axiom. Furthermore,

$$a + c \leq \sup(A) + c$$
 for all $a \in A$,

which shows that A + c is bounded above by $\sup(A) + c$. Therefore, by the completeness axiom, again, $\sup(A + c)$ exists and

$$\sup(A+c) \leqslant \sup(A) + c. \tag{1}$$

Also,

$$a + c \leq \sup(A + c)$$
 for all $a \in A$,

which implies that

$$a \leq \sup(A+c) - c$$
 for all $a \in A;$

that is, $\sup(A + c) - c$ is an upper bound for A. Consequently,

$$\sup(A) \leqslant \sup(A+c) - c,$$

which implies that

$$\sup(A) + c \leqslant \sup(A + c). \tag{2}$$

Combining the inequalities in (1) and (2) yields the result. \Box

(b) If A is non–empty and bounded above and c > 0, then

$$\sup(cA) = c\sup A.$$

Proof: First, note that, since $A \neq \emptyset$, there exists $a \in A$. It then follows that $ca \in cA$, which shows that cA is non-empty.

Next, observe that from the fact that A is bounded above we obtain that $\sup(A)$ exists, by the completeness axiom. Furthermore,

$$ca \leq c \sup(A)$$
 for all $a \in A$,

since c > 0. Thus, cA is bounded above by $c \sup(A)$. Therefore, by the completeness axiom, $\sup(cA)$ exists and

$$\sup(cA) \leqslant c \sup(A). \tag{3}$$

Also,

$$ca \leq \sup(cA)$$
 for all $a \in A$.

Multiplying both sides of the inequality by $c^{-1} > 0$ yields

 $a \leqslant c^{-1} \sup(cA)$ for all $a \in A$;

which shows that $c^{-1} \sup(cA)$ is an upper bound for A. Consequently,

$$\sup(A) \leqslant c^{-1} \sup(cA),$$

which implies that

$$c\sup(A) \leqslant \sup(cA). \tag{4}$$

Combining the inequalities in (3) and (4) yields the result.

(c) What happens if c < 0 in part (b)? State and prove your result.

Solution:

Claim: Suppose that A is non-empty and bounded above. If c < 0, then cA is nonempty and bounded below, and

 $\inf(cA) = c\sup(A).$

Proof of Claim: First note that, since c < 0, from

 $a \leq \sup(A)$ for all $a \in A$,

we get that

$$ca \ge c \sup(A)$$
 for all $a \in A$,

which shows that cA is bounded below by $c \sup(A)$. Since cA is non-empty, as seen in part (b), $\inf(cA)$ exists and

$$c\sup(A) \leqslant \inf(cA). \tag{5}$$

Next, from

$$\inf(cA) \leqslant ca$$
 for all $a \in A$,

we get that

 $c^{-1}\inf(cA) \ge a$ for all $a \in A$,

since $c^{-1} < 0$. Consequently, $c^{-1} \inf(cA)$ is an upper bound for A, and therefore

 $\sup(A) \leqslant c^{-1} \inf(cA).$

Multiplying by c < 0 on both sides then yields

$$c\sup(A) \ge \inf(cA).$$

Combining this inequality with the one in (5) yields the claim. \Box

$$\sup(|c|A) = |c|\sup(A),$$

since |c| > 0. Thus, multiplying by -1 on both sides of the last equation,

$$-\sup(|c|A) = c\sup(A)$$

where we have used the fact that -|c| = c if c < 0. On the other hand,

$$-\sup(|c|A) = \inf(-|c|A) = \inf(cA)$$

Thus, if c < 0 and $A \neq \emptyset$ is bounded above, cA is bounded below and

$$\inf(cA) = c\sup(A).$$

2. Let $A = \left\{ \frac{n+1}{n} \mid n \in \mathbb{N} \right\}$.

Prove that A is bounded above and below and compute $\inf A$ and $\sup A$. Justify your calculations and prove any assertion you make. **Solution**: Given any $a \in A$, there exists $n \in \mathbb{N}$ such that

$$a = \frac{n+1}{n} = 1 + \frac{1}{n}.$$

It then follows that

$$1 < a \leq 2$$
 for all $a \in A$.

Thus, 1 is a lower bound for A and 2 is an upper bound. We then have that inf(A) and sup(A) exist, with

$$1 \leq \inf(A)$$
 and $\sup(A) \leq 2$.

Since $2 = 1 + \frac{1}{1}$ is in A, it follows that

$$\sup(A) = 2.$$

To show that inf(A) = 1, assume by way of contradiction that

$$\inf(A) > 1.$$

Then, $\inf(A) - 1 > 0$ and therefore $\frac{1}{\inf(A) - 1} > 0$. Next, use the fact that \mathbb{N} is not bounded above to obtain $m \in \mathbb{N}$ such that

$$\frac{1}{\inf(A) - 1} < m,$$

from which we get that

$$\inf(A) - 1 > \frac{1}{m},$$

or

$$\inf(A) > 1 + \frac{1}{m},$$

where $1 + \frac{1}{m} \in A$. This is a contradiction; therefore,

$$\inf(A) = 1.$$

~	_	_	٦
۰.			

Alternate Solution: Let $B = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$. We have seen in class that $\sup(B) = 1$ and $\inf(B) = 0$. Observe that

$$A = B + 1.$$

Thus, by the result of Problem 1(a) in this exam,

$$\sup(A) = \sup(B) + 1 = 1 + 1 = 2.$$

We can also prove that

$$\inf(A) = \inf(B) + 1 = 0 + 1 = 1.$$

_	_	_	
			L
			L
			L