Solutions to Exam 1 (Part II)

1. For a subset, A, of the real numbers and a real number, c, define the following sets
(i) $A+c=\{y \in \mathbb{R} \mid y=x+c$ where $x \in A\}$, and
(ii) $c A=\{y \in \mathbb{R} \mid y=c x$ where $x \in A\}$.

Prove the following statements.
(a) If A is non-empty and bounded above, then

$$
\sup (A+c)=\sup A+c
$$

Proof: First, note that, since $A \neq \emptyset$, there exists $a \in A$. It then follows that $a+c \in A+c$, which shows that $A+c$ is non-empty.
Next, observe that from the fact that A is bounded above we obtain that $\sup (A)$ exists, by the completeness axiom. Furthermore,

$$
a+c \leqslant \sup (A)+c \quad \text { for all } a \in A
$$

which shows that $A+c$ is bounded above by $\sup (A)+c$. Therefore, by the completeness axiom, again, $\sup (A+c)$ exists and

$$
\begin{equation*}
\sup (A+c) \leqslant \sup (A)+c \tag{1}
\end{equation*}
$$

Also,

$$
a+c \leqslant \sup (A+c) \quad \text { for all } a \in A,
$$

which implies that

$$
a \leqslant \sup (A+c)-c \quad \text { for all } a \in A
$$

that is, $\sup (A+c)-c$ is an upper bound for A. Consequently,

$$
\sup (A) \leqslant \sup (A+c)-c
$$

which implies that

$$
\begin{equation*}
\sup (A)+c \leqslant \sup (A+c) \tag{2}
\end{equation*}
$$

Combining the inequalities in (1) and (2) yields the result.
(b) If A is non-empty and bounded above and $c>0$, then

$$
\sup (c A)=c \sup A
$$

Proof: First, note that, since $A \neq \emptyset$, there exists $a \in A$. It then follows that $c a \in c A$, which shows that $c A$ is non-empty.
Next, observe that from the fact that A is bounded above we obtain that $\sup (A)$ exists, by the completeness axiom. Furthermore,

$$
c a \leqslant c \sup (A) \quad \text { for all } a \in A,
$$

since $c>0$. Thus, $c A$ is bounded above by $c \sup (A)$. Therefore, by the completeness axiom, $\sup (c A)$ exists and

$$
\begin{equation*}
\sup (c A) \leqslant c \sup (A) \tag{3}
\end{equation*}
$$

Also,

$$
c a \leqslant \sup (c A) \quad \text { for all } a \in A .
$$

Multiplying both sides of the inequality by $c^{-1}>0$ yields

$$
a \leqslant c^{-1} \sup (c A) \quad \text { for all } a \in A
$$

which shows that $c^{-1} \sup (c A)$ is an upper bound for A. Consequently,

$$
\sup (A) \leqslant c^{-1} \sup (c A)
$$

which implies that

$$
\begin{equation*}
c \sup (A) \leqslant \sup (c A) \tag{4}
\end{equation*}
$$

Combining the inequalities in (3) and (4) yields the result.
(c) What happens if $c<0$ in part (b)? State and prove your result.

Solution:

Claim: Suppose that A is non-empty and bounded above. If $c<0$, then $c A$ is nonempty and bounded below, and

$$
\inf (c A)=c \sup (A)
$$

Proof of Claim: First note that, since $c<0$, from

$$
a \leqslant \sup (A) \quad \text { for all } a \in A
$$

we get that

$$
c a \geqslant c \sup (A) \quad \text { for all } a \in A,
$$

which shows that $c A$ is bounded below by $c \sup (A)$. Since $c A$ is non-empty, as seen in part (b), $\inf (c A)$ exists and

$$
\begin{equation*}
c \sup (A) \leqslant \inf (c A) \tag{5}
\end{equation*}
$$

Next, from

$$
\inf (c A) \leqslant c a \quad \text { for all } a \in A
$$

we get that

$$
c^{-1} \inf (c A) \geqslant a \quad \text { for all } a \in A
$$

since $c^{-1}<0$. Consequently, $c^{-1} \inf (c A)$ is an upper bound for A, and therefore

$$
\sup (A) \leqslant c^{-1} \inf (c A)
$$

Multiplying by $c<0$ on both sides then yields

$$
c \sup (A) \geqslant \inf (c A)
$$

Combining this inequality with the one in (5) yields the claim.

Alternate Solution: Using the result from part (b) we have that

$$
\sup (|c| A)=|c| \sup (A)
$$

since $|c|>0$. Thus, multiplying by -1 on both sides of the last equation,

$$
-\sup (|c| A)=c \sup (A)
$$

where we have used the fact that $-|c|=c$ if $c<0$. On the other hand,

$$
-\sup (|c| A)=\inf (-|c| A)=\inf (c A)
$$

Thus, if $c<0$ and $A \neq \emptyset$ is bounded above, $c A$ is bounded below and

$$
\inf (c A)=c \sup (A)
$$

2. Let $A=\left\{\left.\frac{n+1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.

Prove that A is bounded above and below and compute $\inf A$ and $\sup A$.
Justify your calculations and prove any assertion you make.

Solution: Given any $a \in A$, there exists $n \in \mathbb{N}$ such that

$$
a=\frac{n+1}{n}=1+\frac{1}{n} .
$$

It then follows that

$$
1<a \leqslant 2 \quad \text { for all } a \in A
$$

Thus, 1 is a lower bound for A and 2 is an upper bound. We then have that $\inf (A)$ and $\sup (A)$ exist, with

$$
1 \leqslant \inf (A) \quad \text { and } \quad \sup (A) \leqslant 2
$$

Since $2=1+\frac{1}{1}$ is in A, it follows that

$$
\sup (A)=2
$$

To show that $\inf (A)=1$, assume by way of contradiction that

$$
\inf (A)>1
$$

Then, $\inf (A)-1>0$ and therefore $\frac{1}{\inf (A)-1}>0$. Next, use the fact that \mathbb{N} is not bounded above to obtain $m \in \mathbb{N}$ such that

$$
\frac{1}{\inf (A)-1}<m
$$

from which we get that

$$
\inf (A)-1>\frac{1}{m}
$$

or

$$
\inf (A)>1+\frac{1}{m}
$$

where $1+\frac{1}{m} \in A$. This is a contradiction; therefore,

$$
\inf (A)=1
$$

Alternate Solution: Let $B=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. We have seen in class that $\sup (B)=1$ and $\inf (B)=0$.
Observe that

$$
A=B+1
$$

Thus, by the result of Problem 1(a) in this exam,

$$
\sup (A)=\sup (B)+1=1+1=2
$$

We can also prove that

$$
\inf (A)=\inf (B)+1=0+1=1
$$

