Solutions to Exam 1 (Part I)

1. Provide concise answers to the following questions:
(a) A subset, A, of the real numbers is said to be bounded if there exists a positive real number, M, such that

$$
|a| \leqslant M \quad \text { for all } a \in A .
$$

Give the negation of the statement
" A is bounded."
Answer: The negation of " A is bounded" is
For every positive number, M, there exists and an element, a, in A such that $|a|>M$.
(b) Let A denote a subset of the real numbers and β a positive real number. Give the contrapositive for the following implication:

$$
t \in A \Rightarrow t \leq s-\beta
$$

Answer: The contrapositive of " $t \in A \Rightarrow t \leq s-\beta$ " is

$$
t>s-\beta \Rightarrow t \notin A
$$

2. Use the field and order axioms of the real numbers to prove the following.
(a) Let $a, b \in R$. If $a b=0$, then either $a=0$ or $b=0$.

Proof: Assume that $a b=0$ and $a \neq 0$. Then, by Field Axiom $\left(F_{9}\right), a^{-1}$ exists. Multiplying

$$
a b=0
$$

by a^{-1} on both sides yields

$$
a^{-1}(a b)=a^{-1} \cdot 0=0
$$

from which we get that $b=0$, where we have used the Field Axioms $\left(F_{7}\right)$, $\left(F_{9}\right)$ and $\left(F_{10}\right)$.
(b) Let $p \in \mathbb{R}$. If $p>1$, then $p<p^{2}$.

Proof: Assume that $p>1$. It then follows that $p>0$, since $1>0$. We also have that $p-1>0$. Consequently, by the Order Axiom $\left(O_{3}\right)$,

$$
p(p-1)>0 .
$$

Thus, by the distributive property,

$$
p^{2}-p>0
$$

from which we get that $p<p^{2}$.
3. Use the completeness axiom of \mathbb{R} to prove that the set of natural numbers is not bounded above. Deduce, therefore, that for any real number, x, there exists a natural number, n, such that

$$
x<n
$$

Proof: Assume by way of contradiction that \mathbb{N} is a bounded above. Then, since \mathbb{N} is not empty, it follows from the completeness axiom that $\sup (\mathbb{N})$ exists. Thus there must be $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\sup (\mathbb{N})-1<m \tag{1}
\end{equation*}
$$

It follows from the inequality in (1) that

$$
\sup (\mathbb{N})<m+1
$$

where $m+1 \in \mathbb{N}$. This is a contradiction. Therefore, it must be that case that \mathbb{N} not bounded above.
Thus, given any real number, x, there must be a natural number, n, such that

$$
x<n .
$$

Otherwise,

$$
m \leqslant x \quad \text { for all } m \in \mathbb{N}
$$

which would say that x is an upper bound for \mathbb{N}. But we just proved that \mathbb{N} is not bounded above.

