Solutions to Exam 2 (Part I)

- 1. Let (x_n) denote a sequence of real numbers.
 - (a) State precisely what the statement " (x_n) converges" means.

Answer: " (x_n) converges" means that there exists some $x \in \mathbb{R}$ such that, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |x_n - x| < \varepsilon.$$

(b) Let $x_n = \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$. Use the definition that you stated in the previous part to prove that (x_n) converges.

Solution: We show that (x_n) converges to 0. Let $\varepsilon > 0$ be given; then, $\varepsilon^2 > 0$. Thus, by the Archimedean Property, there exists $N \in \mathbb{N}$ such that

$$\frac{1}{N} < \varepsilon^2.$$

Thus, $n \ge N$ implies that

$$0 < \frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{N}} < \varepsilon.$$

Hence,

$$n \ge N \Rightarrow \left| \frac{1}{\sqrt{n}} - 0 \right| < \varepsilon.$$

This completes the proof of the fact that (x_n) converges to 0. \Box

- 2. Let (x_n) denote a sequence of real numbers.
 - (a) State precisely what it means for (x_n) to be a Cauchy sequence.

Answer: (x_n) is a Cauchy sequence means that for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$m, n \ge N \Rightarrow |x_n - x_m| < \varepsilon.$$

Math 101. Rumbos

(b) Prove that if (x_n) converges, the it is a Cauchy sequence.

Proof. Assume that (x_n) converges to $x \in \mathbb{R}$. Then, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |x_n - x| < \frac{\varepsilon}{2}$$

Thus, using the triangle inequality, we get that $n, m \ge N$ implies that

$$|x_n - x_m| = |x_n - x + x - x_m|$$

$$\leqslant |x_n - x| + |x_m - x|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

We have therefore shown that (x_n) is a Cauchy sequence.

- 3. Let $B \subseteq \mathbb{R}$ be a non-empty subset which is bounded below and put $\ell = \inf B$.
 - (a) Prove that there exists a sequence of numbers in B which converges to ℓ .

Proof: Assume that B is a subset of \mathbb{R} which is non-empty and bounded below. Thus, $\inf B$ exists. Set $\ell = \inf B$. Then, for every $n \in \mathbb{N}$, there exists $x_n \in B$ such that

$$x_n < \ell + \frac{1}{n};$$

otherwise $\ell + \frac{1}{n}$ would be a lower bound of B which is bigger than ℓ , which is impossible. We then have that

$$\ell \leqslant x_n < \ell + \frac{1}{n} \quad \text{for all } n \in \mathbb{N}.$$

It then follows by the Squeeze Theorem for sequences that (x_n) converges to ℓ .

(b) Apply the result of the previous part to the set

$$B = \{ q \in \mathbb{Q} \mid q > 0 \text{ and } q^2 > 2 \}$$

to deduce that there exists a sequence of rational numbers $\{q_n\}$ which converges to $\sqrt{2}$.

Note: You will need to prove that $\inf B = \sqrt{2}$.

Solution: First note that B is non-empty and bounded below. In fact, $2 \in B$ since 2 > 0 and $2^2 = 4 > 2$. Furthermore, for any $q \in B$ we have that

$$q > 0$$
 and $q^2 > 2$,

which implies that $q > \sqrt{2}$. It then follows that $\sqrt{2}$ is a lower bound for *B*. Thus, inf *B* exists and

$$\sqrt{2} \leq \inf B.$$

To see that $\inf B = \sqrt{2}$, assume by way of contradiction that

 $\sqrt{2} < \inf B.$

Then, using the fact that \mathbb{Q} is dense in \mathbb{R} , we obtain that there exists $q \in \mathbb{Q}$ such that

$$\sqrt{2} < q < \inf B.$$

We then have that

$$2 < q^2,$$

which shows that $q \in B$, since $q > \sqrt{2} > 0$. However, $q < \inf B$ and $q \in B$ yields a contradiction. Consequently, $\inf B = \sqrt{2}$. Applying the result of part (a) in this problem we then obtain that there exists a sequence, $\{q_n\}$, of numbers in B which converges to $\sqrt{2}$.