Solutions to Exam 2 (Part I)

1. Let $\left(x_{n}\right)$ denote a sequence of real numbers.
(a) State precisely what the statement " $\left(x_{n}\right)$ converges" means.

Answer: " $\left(x_{n}\right)$ converges" means that there exists some $x \in \mathbb{R}$ such that, for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|x_{n}-x\right|<\varepsilon .
$$

(b) Let $x_{n}=\frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$. Use the definition that you stated in the previous part to prove that $\left(x_{n}\right)$ converges.

Solution: We show that $\left(x_{n}\right)$ converges to 0 .
Let $\varepsilon>0$ be given; then, $\varepsilon^{2}>0$. Thus, by the Archimedean Property, there exists $N \in \mathbb{N}$ such that

$$
\frac{1}{N}<\varepsilon^{2}
$$

Thus, $n \geqslant N$ implies that

$$
0<\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{N}}<\varepsilon
$$

Hence,

$$
n \geqslant N \Rightarrow\left|\frac{1}{\sqrt{n}}-0\right|<\varepsilon
$$

This completes the proof of the fact that $\left(x_{n}\right)$ converges to 0 .
2. Let $\left(x_{n}\right)$ denote a sequence of real numbers.
(a) State precisely what it means for $\left(x_{n}\right)$ to be a Cauchy sequence.

Answer: $\left(x_{n}\right)$ is a Cauchy sequence means that for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
m, n \geqslant N \Rightarrow\left|x_{n}-x_{m}\right|<\varepsilon
$$

(b) Prove that if $\left(x_{n}\right)$ converges, the it is a Cauchy sequence.

Proof. Assume that $\left(x_{n}\right)$ converges to $x \in \mathbb{R}$. Then, given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|x_{n}-x\right|<\frac{\varepsilon}{2}
$$

Thus, using the triangle inequality, we get that $n, m \geqslant N$ implies that

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x+x-x_{m}\right| \\
& \leqslant\left|x_{n}-x\right|+\left|x_{m}-x\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

We have therefore shown that $\left(x_{n}\right)$ is a Cauchy sequence.
3. Let $B \subseteq \mathbb{R}$ be a non-empty subset which is bounded below and put $\ell=\inf B$.
(a) Prove that there exists a sequence of numbers in B which converges to ℓ.

Proof: Assume that B is a subset of \mathbb{R} which is non-empty and bounded below. Thus, inf B exists. Set $\ell=\inf B$. Then, for every $n \in \mathbb{N}$, there exists $x_{n} \in B$ such that

$$
x_{n}<\ell+\frac{1}{n}
$$

otherwise $\ell+\frac{1}{n}$ would be a lower bound of B which is bigger than ℓ, which is impossible. We then have that

$$
\ell \leqslant x_{n}<\ell+\frac{1}{n} \quad \text { for all } n \in \mathbb{N}
$$

It then follows by the Squeeze Theorem for sequences that $\left(x_{n}\right)$ converges to ℓ.
(b) Apply the result of the previous part to the set

$$
B=\left\{q \in \mathbb{Q} \mid q>0 \text { and } q^{2}>2\right\}
$$

to deduce that there exists a sequence of rational numbers $\left\{q_{n}\right\}$ which converges to $\sqrt{2}$.
Note: You will need to prove that $\inf B=\sqrt{2}$.

Solution: First note that B is non-empty and bounded below. In fact, $2 \in B$ since $2>0$ and $2^{2}=4>2$. Furthermore, for any $q \in B$ we have that

$$
q>0 \text { and } q^{2}>2
$$

which implies that $q>\sqrt{2}$. It then follows that $\sqrt{2}$ is a lower bound for B. Thus, inf B exists and

$$
\sqrt{2} \leqslant \inf B
$$

To see that $\inf B=\sqrt{2}$, assume by way of contradiction that

$$
\sqrt{2}<\inf B
$$

Then, using the fact that \mathbb{Q} is dense in \mathbb{R}, we obtain that there exists $q \in \mathbb{Q}$ such that

$$
\sqrt{2}<q<\inf B
$$

We then have that

$$
2<q^{2}
$$

which shows that $q \in B$, since $q>\sqrt{2}>0$. However, $q<\inf B$ and $q \in B$ yields a contradiction. Consequently, inf $B=\sqrt{2}$.
Applying the result of part (a) in this problem we then obtain that there exists a sequence, $\left\{q_{n}\right\}$, of numbers in B which converges to $\sqrt{2}$.

