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Solutions to Exam 2 (Part II)

1. Let (xn) denote a sequence of real numbers. For a fixed No ∈ ℕ, define

yn = x
No+n

for all n ∈ ℕ;

that is; y1 = x
No+1

, the (No +1)th term in the sequence (xn), y2 is the (No +2)th

term, and so on.

(a) Prove that (xn) converges if and only if (yn) converges.

Proof: Suppose that (xn) converges to x ∈ ℝ. We show that (yn) also
converges to x.

Let " > 0 be given. Then there exists N1 ∈ ℕ such that

n ⩾ N1 ⇒ ∣xn − x∣ < ". (1)

We may choose N1 > No. Then N1 − No ∈ ℕ. Let N = N1 − No. Then,
n ⩾ N implies that No + N ⩾ N1, so that, by virtue of (1),

∣yn − x∣ = ∣x
No+n
− x∣ < ".

Thus, we have shown that
lim
n→∞

yn = x.

Conversely, assume that (yn) converges to y ∈ ℝ. We show that (xn) also
converges to y.

Let " > 0 be given. Then there exists N2 ∈ ℕ such that

n ⩾ N2 ⇒ ∣yn − y∣ < ". (2)

Let N = N2 + No. Then, n ⩾ N implies that n − No ⩾ N2, so that, by
virtue of (2),

∣xn − y∣ = ∣x
n−No+No

− y∣ = ∣y
n−No

− y∣ < ".

Thus, (yn) converges to y implies that

lim
n→∞

xn = y.
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(b) Prove that if (xn) is bounded and (yn) is monotone, the both (xn) and (yn)
converge.

Proof: Assume that (xn) is bounded and (yn) is monotone. Then, there
exists M > 0 such that

∣xn∣ ⩽M for all n ∈ ℕ.

It then follows that

∣yn∣ = ∣xNo+n
∣ ⩽M for all n ∈ ℕ;

that is, the sequence (yn) is bounded. Since (yn) is also monotone, (yn)
converges by the Bounded, Monotone Convergence Theorem. Hence, by
the result of part (a), (xn) also converges.

(c) Give an interpretation of the results in this problem.

Answer: The convergence properties of a sequence, (xn), are
completely determined by the terms of the sequence after some
No ∈ ℕ; in other words, by the properties of the sequence

(x
No+1

, x
No+2

, x
No+3

, . . .).

□

2. Define a sequence, (xn), of real numbers as follows:

x1 = 1;

xn+1 =
√

1 + xn for all n ∈ ℕ.

(a) Prove that (xn) is monotone.

Suggestion: Consider x2
n+2 − x2

n+1

Proof: We show that xn+1 > xn for all n ∈ ℕ by induction on n. For
n = 1, note that x1+1 =

√
1 + x1 =

√
2 > 1 = x1. So, the result is true for

n = 1. Next, assume that
xn+1 > xn, (3)

and consider
x2
n+2 − x2

n+1 = 1 + xn+1 − (1 + xn)

= xn+1 − xn.
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It then follows from the inductive hypothesis in (3) that

x2
n+2 − x2

n+1 > 0,

from which we get that
xn+2 > xn+1.

It then follows that the sequence (xn) is increasing.

(b) Show that xn < 2 for all n ∈ ℕ.

Proof: We argue by induction on n. Note that x1 = 1 < 2; so the result is
true for n = 1.

Next, assume that
xn < 2. (4)

We then have that
xn+1 =

√
1 + xn <

√
1 + 2,

by the inductive hypothesis in (4). Thus,

xn+1 <
√

3 < 2,

since 3 < 4. The inductive argument is now complete.

(c) Deduce that (xn) converges.

Solution: By parts (a) and (b), the sequence (xn) is monotone
and bounded. Hence, by the Bounded, Monotone Convergence
Theorem, (xn) converges. □

(d) Compute the limit of (xn).

Solution: Let x denote the limit of the sequence (xn). Then, by
the result of part (a) in Problem 1, with No = 1,

lim
n→∞

xn+1 = x,

from which we get that

lim
n→∞

x2
n+1 = x2.

Thus, taking the limit as n→∞ on both sides of

x2
n+1 = 1 + xn
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yields that
x2 = 1 + x.

Hence, x is the positive solution of the quadratic equation

x2 − x− 1 = 0,

or

x =
1 +
√

5

2
.

□


