Review Problems for Exam \#2

1. Suppose that the sequence $\left(x_{n}\right)$ converges to $a \neq 0$, where $x_{n} \neq 0$ for all $n \in \mathbb{N}$. Prove that the sequence $\left(\frac{1}{x_{n}}\right)$ converges to $\frac{1}{a}$.
2. Let $\left(x_{n}\right)$ denote a sequence that converges to x. Prove that for any $m \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} x_{n}^{m}=x^{m}
$$

3. Let $\delta>0$ and define $y_{n}=\frac{1}{(1+\delta)^{n}}$ for all $n \in \mathbb{N}$.
(a) Use the estimate $(1+\delta)^{n}>n \delta$, for all $n \in \mathbb{N}$, to prove that the sequence $\left(y_{n}\right)$ converges to 0 .
(b) Define $x_{n}=x^{n}$. Prove that if $|x|<1$, then $\left(x_{n}\right)$ converges. What is $\lim _{n \rightarrow \infty} x_{n}$?
4. Let $\left(x_{n}\right)$ denote a sequence of real numbers.
(a) Prove that if $\left(x_{n}\right)$ converges then $\left(x_{n}^{2}\right)$ converges.
(b) Show that the converse of the statement in part (a) is not true.
5. Let x, a and b denote a real numbers.
(a) Derive the factorization: $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)$. Suggestion: Let $S=1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}$ and compute $x S$ and $x S-S$.
(b) Derive the factorization formula

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} n+a^{n-3} b^{2}+\cdots+b^{n-1}\right)
$$

(c) Let a and b denote positive real numbers, and n a natural number. Prove that

$$
a>b \text { if and only if } a^{n}>b^{n} .
$$

6. Given $a>0$ and $n \in \mathbb{N}$, prove that there exists a unique positive solution to the equation $x^{n}=a$.
Note: In this problem, you might need to use the binomial expansion

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}, \text { where }\binom{n}{k}=\frac{n!}{k!(n-k)!}, \text { for } k=0,1,2, \ldots, n
$$

7. Let a and b denote positive real numbers. For each natural number n, let $a^{1 / n}$ denote the unique positive solution to the equation $x^{n}=a$.
(a) Prove that if $b \leqslant 1$, then $b^{m} \leqslant 1$ for all $m \in \mathbb{N}$.
(b) Show that if $a>1$, then $a^{1 / n}>1$ for all $n \in \mathbb{N}$.
(c) Prove that if $a>1$, then $a^{m / n}>1$ for all $m, n \in \mathbb{N}$, where $a^{m / n}=\left(a^{1 / n}\right)^{m}$.
8. Let a and b denote positive real, and n a natural number. Prove that

$$
a>b \text { if and only if } a^{1 / n}>b^{1 / n} .
$$

9. Let a denote a positive real number.
(a) Show that if $a>1$, then $a-1>n\left(a^{1 / n}-1\right)$ for all $n \in \mathbb{N}$. Deduce that $\lim _{n \rightarrow \infty} a^{1 / n}=1$, for $a>1$.
(b) Prove that for any positive real number $a, \lim _{n \rightarrow \infty} a^{1 / n}=1$.
10. Define $x_{n}=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n-1}}$ for $n \in \mathbb{N}$.
(a) Multiply the expression for x_{n} by $1 / 2$ and obtain that $x_{n}=2-\frac{2}{2^{n}}$ for $n \in \mathbb{N}$.
(b) Deduce that $\left(x_{n}\right)$ converges to 2 .
11. Define $s_{n}=\sum_{k=0}^{n} \frac{1}{k!}=1+1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}$ for all $n=1,2,3, \ldots$
(a) Show that $s_{n} \leqslant 1+x_{n}$, where $x_{n}=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n-1}}$, for all $n=1,2,3, \ldots$
(b) Show that the sequence $\left(s_{n}\right)$ is increasing and bounded and, therefore, it converges.
(c) Denote the limit of $\left(s_{n}\right)$ by e and show that $2.5 \leqslant e \leqslant 3$.
