Review Problems for Exam #2

- 1. Suppose that the sequence (x_n) converges to $a \neq 0$, where $x_n \neq 0$ for all $n \in \mathbb{N}$. Prove that the sequence $\left(\frac{1}{x_n}\right)$ converges to $\frac{1}{a}$.
- 2. Let (x_n) denote a sequence that converges to x. Prove that for any $m \in \mathbb{N}$,

$$\lim_{n \to \infty} x_n^m = x^m$$

- 3. Let $\delta > 0$ and define $y_n = \frac{1}{(1+\delta)^n}$ for all $n \in \mathbb{N}$.
 - (a) Use the estimate $(1 + \delta)^n > n\delta$, for all $n \in \mathbb{N}$, to prove that the sequence (y_n) converges to 0.
 - (b) Define $x_n = x^n$. Prove that if |x| < 1, then (x_n) converges. What is $\lim_{n \to \infty} x_n$?
- 4. Let (x_n) denote a sequence of real numbers.
 - (a) Prove that if (x_n) converges then (x_n^2) converges.
 - (b) Show that the converse of the statement in part (a) is not true.
- 5. Let x, a and b denote a real numbers.
 - (a) Derive the factorization: $x^n 1 = (x 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$. Suggestion: Let $S = 1 + x + x^2 + \dots + x^{n-2} + x^{n-1}$ and compute xS and xS - S.
 - (b) Derive the factorization formula

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}n + a^{n-3}b^{2} + \dots + b^{n-1})$$

(c) Let a and b denote positive real numbers, and n a natural number. Prove that

a > b if and only if $a^n > b^n$.

Math 101. Rumbos

6. Given a > 0 and $n \in \mathbb{N}$, prove that there exists a unique positive solution to the equation $x^n = a$.

Note: In this problem, you might need to use the binomial expansion

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, for $k = 0, 1, 2, \dots, n$.

- 7. Let a and b denote positive real numbers. For each natural number n, let $a^{1/n}$ denote the unique positive solution to the equation $x^n = a$.
 - (a) Prove that if $b \leq 1$, then $b^m \leq 1$ for all $m \in \mathbb{N}$.
 - (b) Show that if a > 1, then $a^{1/n} > 1$ for all $n \in \mathbb{N}$.
 - (c) Prove that if a > 1, then $a^{m/n} > 1$ for all $m, n \in \mathbb{N}$, where $a^{m/n} = (a^{1/n})^m$.
- 8. Let a and b denote positive real, and n a natural number. Prove that

$$a > b$$
 if and only if $a^{1/n} > b^{1/n}$.

- 9. Let a denote a positive real number.
 - (a) Show that if a > 1, then $a 1 > n(a^{1/n} 1)$ for all $n \in \mathbb{N}$. Deduce that $\lim_{n \to \infty} a^{1/n} = 1$, for a > 1.
 - (b) Prove that for any positive real number a, $\lim_{n \to \infty} a^{1/n} = 1$.
- 10. Define $x_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}}$ for $n \in \mathbb{N}$.
 - (a) Multiply the expression for x_n by 1/2 and obtain that $x_n = 2 \frac{2}{2^n}$ for $n \in \mathbb{N}$.
 - (b) Deduce that (x_n) converges to 2.

11. Define
$$s_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!}$$
 for all $n = 1, 2, 3, \dots$

- (a) Show that $s_n \leq 1 + x_n$, where $x_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}}$, for all $n = 1, 2, 3, \dots$
- (b) Show that the sequence (s_n) is increasing and bounded and, therefore, it converges.
- (c) Denote the limit of (s_n) by e and show that $2.5 \leq e \leq 3$.