Problem Set #3: Completeness Axiom (Part I)

Read: Chapter 5 on *Upper Bounds and Suprema*, pp. 80–85, in Michael J. Schramm' book: "Introduction to Real Analysis."

Definitions and Notation.

Given a non–empty subset A of \mathbb{R} , if A is bounded from above, then the least upper bound of A exists by the Completeness Axiom. We shall denote the least upper bound by $\sup A$ and refer to it also as the **supremum** of the set A.

Let B be a non-empty subset of \mathbb{R} . We say that B is **bounded from below** if there exists $s \in \mathbb{R}$ such that $s \leq x$ for all $x \in B$. We call s a **lower bound** for B. A lower bound s for s with the property that $s \leq s$ for any lower bound s of s is called the **greatest lower bound** for s. If it exists, we denote the greatest lower bound of s by inf s and refer to it also as the **infimum** of s.

Problems:

- 1. Let A be a non-empty subset of \mathbb{R} . Prove that if $\inf A$ and $\sup A$ exist, then they are unique.
- 2. Let B be a non-empty subset of \mathbb{R} . Denote by -B the set $\{x \in \mathbb{R} \mid -x \in B\}$.
 - (a) Prove that if B is bounded from below, then -B is bounded from above. Consequently, $\sup(-B)$ exists.
 - (b) Prove that if B is bounded from below, then B has a greatest lower bound and that

$$\inf B = -\sup(-B).$$

3. Let A and B be subsets of \mathbb{R} and define A + B to be the set

$$\{z \in \mathbb{R} \mid z = x + y, \text{ where } x \in A \text{ and } y \in B\}.$$

(a) Prove that if A and B are non–empty and bounded from above, then so is A+B and that

$$\sup(A+B) \leqslant \sup A + \sup B.$$

(b) Prove that if A and B are non-empty and bounded from below, then so is A+B and that

$$\inf(A+B) \geqslant \inf A + \inf B.$$

- 4. Let A and B be non-empty subsets of \mathbb{R} . Prove the following statements.
 - (a) If $A \subseteq B$ and B is bounded from above, then $\sup A \leqslant \sup B$.
 - (b) If $A \subseteq B$ and B is bounded from below, then $\inf B \leq \inf A$.
- 5. For a subset A of the real numbers and $c \in \mathbb{R}$, define: (i) $A + c = \{y \in \mathbb{R} \mid y = x + c \text{ where } x \in A\}$, and (ii) $cA = \{y \in \mathbb{R} \mid y = cx \text{ where } x \in A\}$. Prove the following statements.
 - (a) Suppose that A is non-empty and bounded above, then

$$\sup(A+c) = \sup A + c.$$

(b) Suppose that A is non-empty and bounded above. If c > 0, then

$$\sup(cA) = c\sup A.$$

(c) Suppose that A is non-empty and bounded above. If c < 0, then

$$\inf(cA) = c\sup A.$$

- 6. Let A be a non-empty subset of \mathbb{R} which is bounded from above. Then, $s = \sup A$ if and only if
 - (i) for each $\varepsilon > 0$, if $x \in A$ then $x < s + \varepsilon$, and
 - (ii) for each $\varepsilon > 0$ there exists $x \in A$ such that $s \varepsilon < x$.
- 7. State and prove a result analogous to that of problem (7) for a non–empty subset B of \mathbb{R} which is bounded from below.
- 8. Let A be a non-empty subset of \mathbb{R} . Prove that if u is an upper bound for A and $u \in A$, then $u = \sup A$.
- 9. Let A and B be a non-empty subsets of \mathbb{R} which are bounded from above. Prove that if $\sup A < \sup B$, then there exists $b \in B$ such that b is an upper bound for A.