Solutions to Assignment \#10

1. Consider a hypothetical experiment in which there are only three bacteria in a culture. Suppose that each bacterium has a small probability p, with $0<p<1$, of developing a mutation in a short time interval. Number the bacteria 1, 2 and 3. Use the symbol M to denote the given bacterium mutates in the short time interval, and N to denote that the bacterium did not mutate in that interval.
(a) List all possible outcomes of the experiment using the symbols M or N, for each of the bacteria 1,2 and 3 , to denote whether a bacterium mutated or not, respectively. This will generate triples made up of the symbols M and N. What is the probability of each outcome?
Solution: For each bacterium there are two possibilities: mutation (M) and no mutation (N). Thus, since there are three bacteria, there are eight possible outcomes:

$$
\begin{aligned}
& N N N \\
& N N M \\
& N M N \\
& N M M \\
& M N N \\
& M N M \\
& M M N \\
& M M M
\end{aligned}
$$

Since $P[N]=1-p$ and $P[M]=p$, and the event that a given bacterium will mutate or not is independent of that for another bacterium, the probabilities for each outcome are given by

Outcome	Probability
$N N N$	$(1-p)^{3}$
$N N M$	$p(1-p)^{2}$
$N M N$	$p(1-p)^{2}$
$N M M$	$p^{2}(1-p)$
$M N N$	$p(1-p)^{2}$
$M N M$	$p^{2}(1-p)$
$M M N$	$p^{2}(1-p)$
$M M M$	p^{3}

Table 1: Outcomes and their probabilities
(b) Let X denote the number of bacteria that mutate in the short time interval. This defines a discrete random variable. List the possible values for X and give the probability for each of these values. In other words, give the probability mass function for X.
Solution: The possible values of X are $0,1,2$ and 3 , and their corresponding probabilities are

x	$P[X=x]$
0	$(1-p)^{3}$
1	$3 p(1-p)^{2}$
2	$3 p^{2}(1-p)$
3	p^{3}

To obtain the probability values in this table, we consider the event $[X=x]$ and see which outcomes in Table 1 make up this event, and then add their probabilities. For instance, the event $[X=1]$ is made up of the outcomes $N N M, N M N$ and $M N N$, each of which has probability $p(1-p)^{2}$, and therefore, $P[X=1]=3 p(1-p)^{2}$.
(c) Compute the expected value and variance of X.

Solution: $E(X)=0 \cdot P[X=0]+1 \cdot P[X=1]+2 \cdot P[X=2]+3 \cdot P[X=3]$, so that

$$
\begin{aligned}
E(X) & =3 p(1-p)^{2}+2 \cdot 3 p^{2}(1-p)+3 \cdot p^{3} \\
& =3 p\left[(1-p)^{2}+2 p(1-p)+p^{2}\right] \\
& =3 p\left[1-2 p+p^{2}+2 p-2 p^{2}+p^{2}\right] \\
& =3 p
\end{aligned}
$$

The variance of X is then given by $\operatorname{var}(X)=\sum_{n=0}^{3} n^{2} P[X=n]-(3 p)^{2}$, where

$$
\begin{aligned}
\sum_{n=0}^{3} n^{2} P[X=n] & =1^{2} \cdot P[X=1]+2^{2} \cdot P[X=2]+3^{2} \cdot P[X=3] \\
& =3 p(1-p)^{2}+2^{2} \cdot 3 p^{2}(1-p)+3^{2} p^{3} \\
& =3 p\left[(1-p)^{2}+4 p(1-p)+3 p^{2}\right] \\
& =3 p\left[1-2 p+p^{2}+4 p-4 p^{2}+3 p^{2}\right] \\
& =3 p[1+2 p]
\end{aligned}
$$

Hence $\operatorname{var}(X)=3 p(1+2 p)-(3 p)^{2}=3 p(1+2 p-3 p)=3 p(1-p)$.
2. Repeat the previous problem in the case of four bacteria, each having a probability p of mutating in a short time interval.
Solution: In this case, there are 16 outcomes with corresponding probabilities

Outcome	Probability
$N N N N$	$(1-p)^{4}$
$N N N M$	$p(1-p)^{3}$
$N N M N$	$p(1-p)^{3}$
$N N M M$	$p^{2}(1-p)^{2}$
$N M N N$	$p(1-p)^{3}$
$N M N M$	$p^{2}(1-p)^{2}$
$N M M N$	$p^{2}(1-p)^{2}$
$N M M M$	$p^{3}(1-p)$
$M N N N$	$p(1-p)^{3}$
$M N N M$	$p^{2}(1-p)^{2}$
$M N M N$	$p^{2}(1-p)^{2}$
$M N M M$	$p^{3}(1-p)$
$M M N N$	$p^{2}(1-p)^{2}$
$M M N M$	$p^{3}(1-p)$
$M M M N$	$p^{3}(1-p)$
$M M M M$	p^{4}

Table 2: Outcomes and their probabilities

If X denotes the number of M 's in the outcomes in Table 2, then the possible values of X are $0,1,2,3$ and 4 , and their corresponding probabilities are

x	$P[X=x]$
0	$(1-p)^{4}$
1	$4 p(1-p)^{3}$
2	$6 p^{2}(1-p)^{2}$
3	$4 p^{3}(1-p)$
4	p^{4}

For the expected value of X we have

$$
\begin{aligned}
E(X) & =P[X=1]+2 \cdot P[X=2]+3 \cdot P[X=3]+4 \cdot P[X=4] \\
& =4 p(1-p)^{3}+2 \cdot 6 p^{2}(1-p)^{2}+3 \cdot 4 p^{3}(1-p)+4 p^{4} \\
& =4 p\left[(1-p)^{3}+3 p(1-p)^{2}+3 p^{2}(1-p)+p^{3}\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
E(X) & =4 p\left[1-3 p+3 p^{2}-p^{3}+3 p\left(1-2 p+p^{2}\right)+3 p^{2}-3 p^{3}+p^{3}\right] \\
& =4 p\left[1-3 p+3 p-6 p^{3}+3 p^{3}+6 p^{2}-3 p^{3}\right] \\
& =4 p
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{n=0}^{4} n^{2} P[X=n] & =P[X=1]+2^{2} \cdot P[X=2]+3^{2} \cdot P[X=3]+4^{2} \cdot P[X=4] \\
& =4 p(1-p)^{3}+2^{2} \cdot 6 p^{2}(1-p)^{2}+3^{2} \cdot 4 p^{3}(1-p)+4^{2} p^{4} \\
& =4 p\left[(1-p)^{3}+6 p(1-p)^{2}+9 p^{2}(1-p)+4 p^{3}\right] \\
& =4 p\left[1-3 p+3 p^{2}-p^{3}+6 p\left(1-2 p+p^{2}\right)+9 p^{2}-9 p^{3}+4 p^{3}\right] \\
& =4 p\left[1-3 p+12 p^{2}-6 p^{3}+6 p-12 p^{2}+6 p^{3}\right] \\
& =4 p(1+3 p)
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{n=0}^{4} n^{2} P[X=n]-(E(X))^{2} \\
& =4 p(1+3 p)-(4 p)^{2} \\
& =4 p(1+3 p-4 p) \\
& =4 p(1-p) .
\end{aligned}
$$

3. Generalize problems 1 and 2 for the case of N bacteria, each having a probability p of mutating in a short time interval.
For this problem it will be helpful to know that the number of different ways of choosing m bacteria out of N is given by the combinatorial expression

$$
\binom{N}{m}=\frac{N!}{m!(N-m)!}
$$

for $m=0,1,2, \ldots, N$. The symbol $\binom{N}{m}$ is read " N choose m."
Note: The distribution for X obtained in this problem is called the binomial distribution with parameters p and N.
Solution: Let X denote the number of bacteria out of the N that mutate. Then, the event $[X=m$] is made up of outcomes consisting of m " $M \mathrm{~s}$ " and $N-m$ " N s." There are $\binom{N}{m}$ of those outcomes, each having a probability of $p^{m}(1-p)^{N-m}$. It then follows that

$$
P[X=m]=\binom{N}{m} p^{m}(1-p)^{N-m} \quad \text { for } m=0,1,2, \ldots, N .
$$

As for the expected value of X and its variance, it appears as if

$$
E(X)=N p
$$

and

$$
\operatorname{var}(X)=N p(1-p)
$$

4. In the previous problem you found that the expected number bacteria that mutate in the short time interval is $p N$. Denote this value by λ, so that $\lambda=p N$. Explore what happens as N gets larger and larger while λ is kept at a fixed value. In particular, compute $\lim _{N \rightarrow \infty} P[X=m]$ for any given m. What do you discover?

Hints:

i. For this problem it will be helpful to remember that another expression for the exponential function, e^{x}, is given by the limit

$$
e^{x}=\lim _{N \rightarrow \infty}\left(1+\frac{x}{N}\right)^{N} \quad \text { for any real value of } x
$$

ii. Also, $\frac{N!}{N^{m}(N-m)!}=\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{m+1}{N}\right)$.

Solution: Suppose that $p N=\lambda$ is constant. Then, $p=\frac{\lambda}{N}$, and

$$
\begin{aligned}
P[X=m] & =\binom{N}{m} p^{m}(1-p)^{N-m} \\
& =\frac{N!}{m!(N-m)!}\left(\frac{\lambda}{N}\right)^{m}\left(1-\frac{\lambda}{N}\right)^{N-m}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
P[X=m]=\frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{N}\right)^{N} \frac{N!}{N^{m}(N-m)!}\left(1-\frac{\lambda}{N}\right)^{-m} \tag{1}
\end{equation*}
$$

Observe that for fixed m

$$
\lim _{N \rightarrow \infty}\left(1-\frac{\lambda}{N}\right)^{-m}=1
$$

and

$$
\lim _{N \rightarrow \infty} \frac{N!}{N^{m}(N-m)!}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{m+1}{N}\right)=1
$$

It then follows from (1) that

$$
\lim _{N \rightarrow \infty} P[X=m]=\frac{\lambda^{m}}{m!} \lim _{N \rightarrow \infty}\left(1-\frac{\lambda}{N}\right)^{N}=\frac{\lambda^{m}}{m!} e^{-\lambda}
$$

This shows that the distribution of X tends to a Poisson distribution with parameter $\lambda=p N$ as $N \rightarrow \infty$. Thus, when N is very large and p is very small, the distribution of X can be approximated by a Poisson distribution with parameter $\lambda=p N$.
5. Modeling Survival Time after a Treatment ${ }^{1}$. Consider a group of people who have received a treatment for a disease such as cancer. Let T denote the survival time; that is, T is the number of years a person lives after receiving the treatment. T can be modeled as a continuous random variable with probability density function (pdf) given by

$$
f_{T}(t)= \begin{cases}\frac{1}{\beta} e^{-t / \beta} & \text { for } t \geq 0 \\ 0 & \text { for } t>0\end{cases}
$$

for some positive constant β. This pdf can be used to compute the probability that, after receiving treatment, a patient will survive between t_{1} and t_{2} years as follows:

$$
P\left[t_{1}<T<t_{2}\right]=\int_{t_{1}}^{t_{2}} f_{T}(t) \mathrm{d} t
$$

(a) Find the expected value of T; that is, compute $E(T)=\int_{-\infty}^{\infty} t f_{T}(t) \mathrm{d} t$.

Solution: Integrate by parts to get

$$
\begin{aligned}
E(T) & =\int_{0}^{\infty} t \frac{1}{\beta} e^{-t / \beta} \mathrm{d} t \\
& =-\left.t e^{-t / \beta}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-t / \beta} \mathrm{d} t \\
& =0+\left[-\beta e^{-t / \beta}\right]_{0}^{\infty} \\
& =\beta .
\end{aligned}
$$

(b) The survival function, $S(t)$, is the probability that a randomly selected person will survive for at least t years after receiving treatment. Compute $S(t)$.
Solution: For $t>0$,

$$
S(t)=P[T>t]=\int_{t}^{\infty} f_{T}(\tau) \mathrm{d} \tau=\int_{t}^{\infty} \frac{1}{\beta} e^{-\tau / \beta} \mathrm{d} \tau
$$

Thus,

$$
S(t)=\left[-e^{-\tau / \beta} \mathrm{d} \tau\right]_{t}^{\infty}=e^{-t / \beta}
$$

[^0](c) Suppose that a patient has a 70% probability of surviving at least two years. Find β.
Solution: Given that $S(2)=0.70$, we have that $e^{-2 / \beta}=0.7$. Solving for β we then obtain that $\beta=-\frac{2}{\ln (0.7)} \doteq 5.6$ years.

[^0]: ${ }^{1}$ Adapted from problem 7 on p. 427 in Calculus: Single Variable, Hughes-Hallet et al., Fourth Edition, Wiley, 2005

