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Solutions to Assignment #2

1. Consider the population model given by the difference equation

Nt+1 −Nt = m,

where m is a constant, for t = 0, 1, 2, . . ..

(a) Give an interpretation for this model.

Solution: This equation says that the population increment (or decrease, if
m < 0) is constant; equivalently, after each unit of time, the same number
of individuals are added (or taken away from) to the population. □

(b) If the initial population density is No, what does this model predict in the
long run? Consider the two possibilities m < 0 and m > 0.

Solution: From Nt+1 = Nt + m we get tht N1 = No + m. Consequently,
N2 = N1 +m = No +m+m = No +2m. Similarly, N3 = No +3m. Thus, it
follows by induction on n that Nn = No + nm for all n = 1, 2, 3, . . . Hence

Nt = No +mt for all t = 1, 2, 3 . . .

Hence, if m > 0, the population will increase linearly and indefinitely,
while if m < 0, it will decrease to extinction in a finite time. □

(c) How does this model compare with the Malthusian model?

Solution: This model predits linear growth or decay, while the Malthusian
model predits geometric growth or decay. □

2. Assume that the per–capita growth rate � of a population is less than 1; that
is, left on its own, the population will go extinct. To avoid extinction, suppose
that after each unit of time, a constant number m of individuals of the same
species is added to the population.

(a) Write down a difference equation that models this situation.

Solution: Nt+1 = �Nt +m.

(b) Solve the difference equation and discuss what this model predicts in the
long run.

Solution: Suppose that at time t = 0 there are No individuals. Then,
N1 = �No+m. Thus, N2 = �N1+m = �(�No+m)+m = �2No+�m+m.
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In a similar manner we can compute N3 = �3No + �2m+ �m+m. Hence,
by induction on n we can show that

Nn = �nNo + �n−1m+ �n−2m+ ⋅ ⋅ ⋅+ �m+m

= No�
n +m

(
�n−1 + �n−2 + ⋅ ⋅ ⋅+ �+ 1

)
= No�

n +m ⋅ �
n − 1

�− 1

for n = 1, 2, 3, . . .. Consequently,

Nt = No�
t +m ⋅ 1− �t

1− �
for t = 0, 1, 2, . . .

Now, since ∣�∣ < 1 it follows that

lim
t→∞

Nt =
m

1− �
.

Thus, this model predicts that the population will tend to the equilibrium
value of m/(1− �) □

(c) How does this model compare with the Malthusian model?

Solution: While the Malthusian model (with � < 1) predicts extinction,
this model predicts that the population will tend towards a non-zero steady
state. □

3. [Problem 1.1.2 on page 6 in Allman and Rhodes]. In early stages of the devel-
opment of a frog embryo, cell division at a fairly regular rate. Suppose that
you observe that all cells divide, and hence the number of cells doubles, roughly
every half hour.

(a) Write down an equation modeling this situation.

Solution: Let Nt denote the number of cells in the embryo at time t, where
t denotes the number of doubling times; that is, t is measured in mumbers
of 30–minute periods. Assume also that there is one cell (No = 1) at the
start of the process. Then, the difference equation modeling the growth of
the embryo is

Nt+1 = 2Nt. □

(b) Produce a table and graph the number of cells in the embryo as a function
of t.

Solution: Figure 2 shows the graph. □
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Figure 1: Graph for Problem 1.1.2 part (b)
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Figure 2: Plot of Insect Population Values on p. 7 of Allman and Rhodes

(c) Further observation shows that, after 10 hours, the embryo has 30, 000
cells. Is this roughly consistent with the model? What biological conclu-
sions and/or questions does this raise?

Solution: A time period of 10 hours corresponds to t = 20. The predicted
value then isN10 = 220 = 1, 048, 576. There is therefore a large discrepancy
suggesting that a simple geometric growth model is not the appropriate
one for embryo cells. Perhaps, after several divisions, cells especialize and
differentiate and therefore might take longer to divide. □

4. [Problem 1.1.6 on page 7 in Allman and Rhodes].

Solution: Figure 3 shows the graph of the insects population values versus t
in Table 1.2 on p. 7 of Allman and Rhodes. Insect growth is definitely not
consistent with the geometric growth model. Perhaps, this might be the case
over the time interval [0, 4]. However, the logistic model seems to be more



Math 36. Rumbos Spring 2010 5

appropriate in this case. □

5. [Problem 1.1.10 on page 7 in Allman and Rhodes]. A model for the growth of
Pt is said to have a steady state or equilibrium point at P ∗ if whenever Pt = P ∗,
then Pt+1 = P ∗.

(a) This is equivalent to saying that: P ∗ is a steady state if, whenever Pt = P ∗,
then ΔP = 0. □

(b) More intuitively, P ∗ is a steady state, if whenever the value P ∗ is reached,
the population values remain at P ∗ for all values of t. □

(c) Can a model described by Pt+1 = (1 + r)Pt have a steady state? Explain.

Solution: Suppose there is a steady state P ∗. It then follows that P ∗ =
(1 + r)P ∗, which implies that 1 = 1 + r, and therefore r = 0. Thus, there
is a steady state only when r = 0. Notice that in this case we get the
difference equation Pt+1 = Pt which can only have constant solutions. □


