Solutions to Assignment #2

1. Consider the population model given by the difference equation

$$N_{t+1} - N_t = m$$

where m is a constant, for $t = 0, 1, 2, \ldots$

- (a) Give an interpretation for this model.
 Solution: This equation says that the population increment (or decrease, if m < 0) is constant; equivalently, after each unit of time, the same number of individuals are added (or taken away from) to the population. □
- (b) If the initial population density is N_o , what does this model predict in the long run? Consider the two possibilities m < 0 and m > 0. Solution: From $N_{t+1} = N_t + m$ we get the $N_1 = N_o + m$. Consequently, $N_2 = N_1 + m = N_o + m + m = N_o + 2m$. Similarly, $N_3 = N_o + 3m$. Thus, it follows by induction on n that $N_n = N_o + nm$ for all $n = 1, 2, 3, \ldots$ Hence

$$N_t = N_o + mt$$
 for all $t = 1, 2, 3...$

Hence, if m > 0, the population will increase linearly and indefinitely, while if m < 0, it will decrease to extinction in a finite time. \Box

- (c) How does this model compare with the Malthusian model?
 Solution: This model predits linear growth or decay, while the Malthusian model predits geometric growth or decay. □
- 2. Assume that the *per-capita* growth rate λ of a population is less than 1; that is, left on its own, the population will go extinct. To avoid extinction, suppose that after each unit of time, a constant number m of individuals of the same species is added to the population.
 - (a) Write down a difference equation that models this situation. Solution: $N_{t+1} = \lambda N_t + m$.
 - (b) Solve the difference equation and discuss what this model predicts in the long run.

Solution: Suppose that at time t = 0 there are N_o individuals. Then, $N_1 = \lambda N_o + m$. Thus, $N_2 = \lambda N_1 + m = \lambda (\lambda N_o + m) + m = \lambda^2 N_o + \lambda m + m$. In a similar manner we can compute $N_3 = \lambda^3 N_o + \lambda^2 m + \lambda m + m$. Hence, by induction on n we can show that

$$N_n = \lambda^n N_o + \lambda^{n-1} m + \lambda^{n-2} m + \dots + \lambda m + m$$
$$= N_o \lambda^n + m \left(\lambda^{n-1} + \lambda^{n-2} + \dots + \lambda + 1\right)$$
$$= N_o \lambda^n + m \cdot \frac{\lambda^n - 1}{\lambda - 1}$$

for $n = 1, 2, 3, \ldots$ Consequently,

$$N_t = N_o \lambda^t + m \cdot \frac{1 - \lambda^t}{1 - \lambda} \quad \text{for} \quad t = 0, 1, 2, \dots$$

Now, since $|\lambda| < 1$ it follows that

$$\lim_{t \to \infty} N_t = \frac{m}{1 - \lambda}.$$

Thus, this model predicts that the population will tend to the equilibrium value of $m/(1-\lambda)$

- (c) How does this model compare with the Malthusian model?
 Solution: While the Malthusian model (with λ < 1) predicts extinction, this model predicts that the population will tend towards a non-zero steady state. □
- 3. [Problem 1.1.2 on page 6 in Allman and Rhodes]. In early stages of the development of a frog embryo, cell division at a fairly regular rate. Suppose that you observe that all cells divide, and hence the number of cells doubles, roughly every half hour.
 - (a) Write down an equation modeling this situation.

Solution: Let N_t denote the number of cells in the embryo at time t, where t denotes the number of doubling times; that is, t is measured in mumbers of 30-minute periods. Assume also that there is one cell $(N_o = 1)$ at the start of the process. Then, the difference equation modeling the growth of the embryo is

$$N_{t+1} = 2N_t. \quad \Box$$

(b) Produce a table and graph the number of cells in the embryo as a function of t.

Solution: Figure 2 shows the graph. \Box

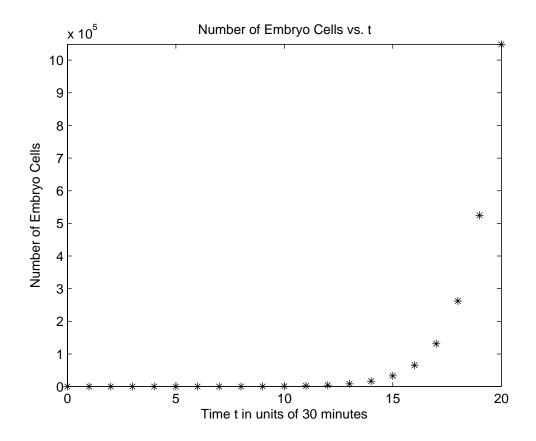


Figure 1: Graph for Problem 1.1.2 part (b)

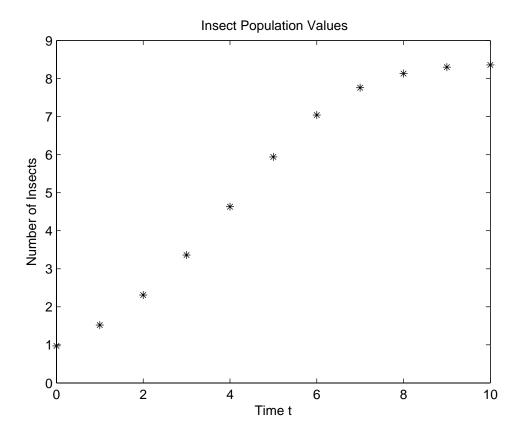


Figure 2: Plot of Insect Population Values on p. 7 of Allman and Rhodes

- (c) Further observation shows that, after 10 hours, the embryo has 30,000 cells. Is this roughly consistent with the model? What biological conclusions and/or questions does this raise? Solution: A time period of 10 hours corresponds to t = 20. The predicted value then is $N_10 = 2^{20} = 1,048,576$. There is therefore a large discrepancy suggesting that a simple geometric growth model is not the appropriate one for embryo cells. Perhaps, after several divisions, cells especialize and differentiate and therefore might take longer to divide. \Box
- 4. [Problem 1.1.6 on page 7 in Allman and Rhodes].

Solution: Figure 3 shows the graph of the insects population values versus t in Table 1.2 on p. 7 of Allman and Rhodes. Insect growth is definitely not consistent with the geometric growth model. Perhaps, this might be the case over the time interval [0, 4]. However, the logistic model seems to be more

appropriate in this case. \Box

- 5. [Problem 1.1.10 on page 7 in Allman and Rhodes]. A model for the growth of P_t is said to have a steady state or equilibrium point at P^* if whenever $P_t = P^*$, then $P_{t+1} = P^*$.
 - (a) This is equivalent to saying that: P^* is a steady state if, whenever $P_t = P^*$, then $\Delta P = 0$. \Box
 - (b) More intuitively, P^* is a steady state, if whenever the value P^* is reached, the population values remain at P^* for all values of t. \Box
 - (c) Can a model described by $P_{t+1} = (1+r)P_t$ have a steady state? Explain. Solution: Suppose there is a steady state P^* . It then follows that $P^* = (1+r)P^*$, which implies that 1 = 1 + r, and therefore r = 0. Thus, there is a steady state only when r = 0. Notice that in this case we get the difference equation $P_{t+1} = P_t$ which can only have constant solutions. \Box