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Solutions to Assignment #4

1. (Numerical Analysis of the Logistic Equation). In this problem and the next
two, you are asked to use the MATLABR⃝program Logistic.m to explore how
the nature of the solutions to the logistic difference equation

Nt+1 = Nt + rNt(1−Nt) (1)

changes as one varies the parameter r and the initial condition No. The code
for Logistic.m may be found in the Math 36 webpage of the courses website
at http://pages.pomona.edu/˜ajr04747.

Start out with the initial condition No = 0.1 and consider the following values
of r: 1, 1.5, 2, 2.1, 2.25, 2.5 and 2.7. Describe in words the long term behavior
of the solution to (1) for each value of r. Is there any significant change in the
structure of the solution? Is there anything striking?

Solution: At r = 1, the solution appears to level off at N = 1 as t → ∞.
At r = 1.5, solution overshoots the N = 1 value, but then oscillates about it
with decreasing amplitude until it settles at N = 1 for large values of t. At
r = 2, solution appears to oscillate around N = 1 with amplitude apparently
decreasing very gradually; it is hard to tell if eventually it will go to N = 1. At
r = 2.1, solutions appears to oscillate about N = 1 forever, starting at t = 3. At
r = 2.25, solution is oscillating. At r = 2.5, solution oscillates with a different
pattern: values appear to repeat after two cycles (period-2 oscillations). At
r = 2.7, oscillations occur at a pattern that is difficult to predict or describe.
□

2. (Numerical Analysis of the Logistic Equation, continued). Keep the value of r
at 2.7 and try the following initial conditions:

No = 0.1 and No = 0.101.

Before you try the second initial condition, type the MATLABR⃝command hold

on. This will allow you to see the plots of the two solutions on the same graph.
Is there anything that strikes you? What implications does this result might
have on the question of predictability?

Solution: After t = 8, the second solution starts to have a very different pattern
of oscillation from that of the first solution. After t = 8, the solutions have
quite different values. This is striking considering that there was not that much
difference in the initial conditions (they differ only by 0.001). Thus, varying the
initial condition just slightly, generates a very different pattern of oscillation
which is hard to predict. □
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3. (Numerical Analysis of the Logistic Equation, continued).

(a) What happens when r = 3 and t is allowed to range from 0 to 100? How
would you describe the solution?

Solution: Solution seems to oscillate erratically. □

(b) What happens when r = 3.01? Does this result suggest that we need to
impose a restriction on r? What should that restriction be?

Solution: Solution ceases to exist after t = 10 (that is, it becomes negative
afterwards and is therefore no longer biologically meaningful). Thus, we
need to restrict r to lie strictly between 0 and 3; i.e., 0 < r < 3. □

4. [Problems 1.1.16 (a)(b) on pages 9 and 10 in Allman and Rhodes] Suppose the
growth of a population is modeled by the difference equation Nt+1 = 2Nt and
the initial condition N0 = A, where t is measured in years.

(a) Suppose we change the time scale so that one unit in the new scale repre-

sents half a year. We express this by the equation � =
1

2
t. If we let P�

denote the population size in the new time scale, find the model equation
for P� so that the growth is still geometric.

Table 1: Changing Time Steps in a Model

t 0 1 2 3
Nt A 2A 4A 8A
� 0 1 2 3 4 5 6

P� A
√

2A 2A 2
√

2A 4A 4
√

2A 8A

Solution: The values in last row in Table 1 were obtained by requiring that
P� grows geometrically; in particular, we want

P2

P1

=
P1

P0

.

Since P2 = N1 = 2A and P0 = A, we then get that

2A

P1

=
P1

A
.

Solving for P1 in the last equation, we obtain P1 =
√

2A. We then see that
every term in that row is obtained by multiplying the previous one by

√
2.

Hence
P�+1 = 21/2P� . □
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(b) Produce a new model in which the time scale is given by � =
1

10
t. Denote

the population size by Q� .

Solution: As in the previous part, we seek to fill in the quantities Qi for
i = 1, 2, 3, . . . in the last row of Table 2. In order to do so we need to find
a multiplier � such that Q�+1 = �Q� for � = 0, 1, 2, 3, . . .

Table 2: Time Scale � = t/10

t 0 1
Nt A 2A
� 0 1 2 3 4 5 6 7 8 9 10
Q� A Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 2A

Suppose for the moment that we have found the multiplier �, then

Qn = �nA

for all n = 0, 1, 2, 3, . . .. Thus, since Q10 = N1, we have that �10A = 2A,
which implies that � = 21/10. Consequently,

Q�+1 = 21/10Q� . □.

5. [Problems 1.1.16 (c)(d) on page 10 in Allman and Rhodes]

(c) Produce a new model that agrees with Nt at 1–year intervals, but its time

scale is given by � =
1

ℎ
t, for some ℎ > 0. Denote the population size by

R� .

Solution: We seek to find a parameter � such that R�+1 = �R� for � =
0, 1, 2, . . . Then, R� = ��A for all � . In particular, we get that R1/ℎ =
N1 = 2A, or �1/ℎA = 2A, which implies that �1/ℎ = 2, so that � = 2ℎ. It
then follows that

R�+1 = 2ℎR� . □

(d) Generalize parts (a)–(c) for the case in which Nt satisfies the difference
equation

Nt+1 = kNt,

for some constant k, and we seek to produce a new model that agrees with

Nt at 1–year intervals, but its time scale is given by � =
1

ℎ
t, for some

ℎ > 0.
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Solution: Denote the population size by P� , and look for � such that

P�+1 = �P�

for � = 0, 1, 2, . . . Then, P� = ��A for all � . In particular, we get that
P1/ℎ = N1 = kA, or �1/ℎA = kA, which implies that �1/ℎ = k, so that
� = kℎ. It then follows that

P�+1 = kℎP� . □


