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Solutions to Assignment #5

1. Suppose that Xt satisfies the difference inequlity

∣Xt+1∣ ≤ �∣Xt∣ for t = 0, 1, 2, 3, . . .

where 0 < � < 1. Prove that lim
t→∞

Xt = 0.

Solution: For t = 0 we get
∣X1∣ ≤ �∣Xo∣.

Similarly, for t = 1, we get

∣X2∣ ≤ �∣X1∣ ≤ �2∣Xo∣,

by the previous inequality. We may, therefore, proceed by induction on n to
prove that

∣Xn∣ ≤ �n∣Xo∣ for n = 1, 2, 3, . . .

We therefore have that

0 ⩽ ∣Xt∣ ⩽ �t∣Xo∣, for t = 0, 1, 2, . . . ,

where 0 < � < 1, so that
lim
t→∞

�t = 0.

It then follows by the Squeeze Theorem, or the Sandwich Theorem, that

lim
n→∞

∣Xn∣ = 0.

Hence, lim
t→∞

Xt = 0. □

2. The Principle of Linearized Stability for the difference equation

Nt+1 = f(Nt)

states that, if f is differentiable at a fixed point N∗ and

∣f ′(N∗)∣ < 1,

then N∗ is an assymptotically stable equilibrium solution.

In this problem we use the Principle of Linearized stability to analyze the fol-
lowing population model:

Nt+1 =
kNt

b+Nt

where k and b are postive parameters.
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(a) Write the model in the form Nt+1 = f(Nt) and give the fixed points of f .
What conditions of k and b must be imposed in order to ensure that the
model will have a non–negative steady state?

Solution: f(x) =
kx

b+ x
in this case, so that the fixed points of f are

solutions to the equation
kx

b+ x
= x,

or
kx

b+ x
− x = 0.

Factoring the last expression we get

x

(
k

b+ x
− 1

)
= 0.

Thus, either x = 0 or
k

b+ x
− 1 = 0. Solving the last expression for x we

obtain x = k − b. Thus, the fixed point of f are

N∗ = 0 and N∗ = k − b.

For the second fixed point to be nonnegative, it must be the case that
b ≤ k. □

(b) Determine the stability of the equilibrium points found in part (a).

Solution: We apply the Principle of Linearized Stability. Compute

f ′(x) =
bk

(b+ x)2
.

Then, f ′(0) =
bk

b2
=
k

b
≥ 1 since b ≤ k, by part (a). Thus, if b < k, then

N∗ = 0 is unstable, by the Principle of Linearized Stability. If if b = k,
the Principle of Linearized Stability does not apply.

Similarly, since f ′(k − b) =
bk

k2
=

b

k
≤ 1 since b ≤ k, by part (a).

Thus, if b < k, then N∗ = k − b is asymptotically stable, by the Principle
of Linearized Stability. On the other hand, if b = k, the Principle of
Linearized Stability does not apply. □

3. [Problems 1.3.6 (d)(e) on page 29 in Allman and Rhodes]
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(d) Determine the equilibrium points of ΔP = aP − bP 2.

Solution: Solve the equation aP−bP 2 = 0, P (a−bP ) = 0 to obtain P ∗ = 0
or P ∗ = a/b (here we are assuming that b ∕= 0). □

(e) Determine the equilibrium points of Pt+1 = cPt − dP 2
t .

Solution: Here we find the fixed points of f(P ) = cP − dP 2; that is, we
solve the equation f(P ) = P , or cP − dP 2 = P . To solve this equation,
we rewrite it as

(c− 1)P − dP 2 = 0,

from which we get, after factoring that

P [(c− 1)− dP ] = 0.

Thus, P ∗ = 0 or P ∗ = (c− 1)/d, for d ∕= 0. □

4. [Problems 1.3.7 (d)(e) on page 29 in Allman and Rhodes] For each of the equa-
tions in the previous problem, use the principle of linearized stability to deter-
mine the stability of each of the equilibrium points.

(d) ΔP = aP − bP 2.

Solution: Here, f(P ) = P + aP − bP 2, so that f ′(P ) = 1 + a− 2bP . Thus,
f ′(0) = 1 + a. Hence, P ∗ = 0 is stable for −2 < a < 0, and unstable for
a > 0 or a < −2.

Similarly, since f ′(a/b) = 1 + a − 2b(a/b) = 1 − a, P ∗ = a/b is stable for
0 < a < 2, and unstable for a < 0 or a > 2. □

(e) Pt+1 = cPt − dP 2
t .

Solution: In this case, f(P ) = cP − dP 2 and so f ′(P ) = c− 2dP .

Thus, f ′(0) = c and so P∗ = 0 is stable if ∣c∣ < 1 and unstable if ∣c∣ > 1.

Similarly, since f ′((c− 1)/d) = 2− c, P ∗ = (c− 1)/d is stable is 1 < c < 3,
and unstable if c < 1 or c > 3. □

5. Problems 1.3.11 (a)(b)(c)(d) on page 30 in Allman and Rhodes.

Note: The code for the MATLABR⃝program onepop may be downloaded from the
courses website at http://pages.pomona.edu/˜ajr04747.

Many biological processes involve diffusion. A simple example is the passage of
oxygen from the from the lung into the bloodstream (and the passage of carbon
dioxide in the opposite direction). A simple model views the lung as a single
compartment with oxygen concentration L and the bloodstream an adjoining
compartment with oxygen concentration B. If, for simplicity, we assume that
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the compartments both have volume 1, then in the time span of a single breath
the total oxygen K = L + B is constant. If we think of a very small time
interval, then the increase of B over this time interval will be proportiaonal to
the difference between L and B. That is,

ΔB = r(L−B). (1)

(This experimental fact is sometimes called Fick’s Law.)

(a) In what range must the parameter r be for this model to be meaningful?

Solution: 0 < r < 1 since (i) the oxigen concentration in the bloodstream
must increase (with oxygen coming from the lungs) if L > B, and decrease
of B > L; and (ii) even if B is very low, it can not increase by an amount
larger than the amount of oxygen available in the lungs. □

(b) Use the fact that L+B = K to write the model (1)using only the param-
eters r and K to describe ΔB in terms of B.

Solution: Solving for L in L+B = K and susbtituting into (1 yields

ΔB = r(K − 2B). □

(c) For r = 0.1 and K = 1, and a variety of choices for Bo, investigate the
MATLABR⃝program onepop. How do things change is a different valueof
r is used?

Solution: For any initial condition Bo, the solutions tend to K/2 = 0.5 as
t→∞. The result is the same for any r with 0 < r < 1. □

(d) Algebraically, find the equilibrium point B∗ for (1. Does this fit with what
you saw in part (c)? Can you explain this result intuitively?

Solution: We apply the Principle of Linearized Stability. In this case
f(B) = B + r(K − 2B), so that the the fixed point of f is B such that
f(B) = B, which yields B∗ = K/2. To determine whether or not B∗ is
stable, compute f ′(B) = 1−2r. Thus, B∗ = K/2 is stable if ∣1−2r∣ < 1 or
0 < r < 1. This is precisely what we saw in the numerical experiments in
part (c). Intuitevly, as time goes on, after many breaths, the oxygen con-
centration in the bloodstream should reach a steady state which is equal
the amoung of oxygen in the lungs. □


