Solutions to Assignment \#5

1. Suppose that X_{t} satisfies the difference inequlity

$$
\left|X_{t+1}\right| \leq \eta\left|X_{t}\right| \quad \text { for } \quad t=0,1,2,3, \ldots
$$

where $0<\eta<1$. Prove that $\lim _{t \rightarrow \infty} X_{t}=0$.
Solution: For $t=0$ we get

$$
\left|X_{1}\right| \leq \eta\left|X_{o}\right| .
$$

Similarly, for $t=1$, we get

$$
\left|X_{2}\right| \leq \eta\left|X_{1}\right| \leq \eta^{2}\left|X_{o}\right|
$$

by the previous inequality. We may, therefore, proceed by induction on n to prove that

$$
\left|X_{n}\right| \leq \eta^{n}\left|X_{o}\right| \quad \text { for } \quad n=1,2,3, \ldots
$$

We therefore have that

$$
0 \leqslant\left|X_{t}\right| \leqslant \eta^{t}\left|X_{o}\right|, \quad \text { for } t=0,1,2, \ldots
$$

where $0<\eta<1$, so that

$$
\lim _{t \rightarrow \infty} \eta^{t}=0
$$

It then follows by the Squeeze Theorem, or the Sandwich Theorem, that

$$
\lim _{n \rightarrow \infty}\left|X_{n}\right|=0
$$

Hence, $\lim _{t \rightarrow \infty} X_{t}=0$.
2. The Principle of Linearized Stability for the difference equation

$$
N_{t+1}=f\left(N_{t}\right)
$$

states that, if f is differentiable at a fixed point N^{*} and

$$
\left|f^{\prime}\left(N^{*}\right)\right|<1,
$$

then N^{*} is an assymptotically stable equilibrium solution.
In this problem we use the Principle of Linearized stability to analyze the following population model:

$$
N_{t+1}=\frac{k N_{t}}{b+N_{t}}
$$

where k and b are postive parameters.
(a) Write the model in the form $N_{t+1}=f\left(N_{t}\right)$ and give the fixed points of f. What conditions of k and b must be imposed in order to ensure that the model will have a non-negative steady state?
Solution: $f(x)=\frac{k x}{b+x}$ in this case, so that the fixed points of f are solutions to the equation

$$
\frac{k x}{b+x}=x
$$

or

$$
\frac{k x}{b+x}-x=0
$$

Factoring the last expression we get

$$
x\left(\frac{k}{b+x}-1\right)=0
$$

Thus, either $x=0$ or $\frac{k}{b+x}-1=0$. Solving the last expression for x we obtain $x=k-b$. Thus, the fixed point of f are

$$
N^{*}=0 \quad \text { and } \quad N^{*}=k-b .
$$

For the second fixed point to be nonnegative, it must be the case that $b \leq k$.
(b) Determine the stability of the equilibrium points found in part (a).

Solution: We apply the Principle of Linearized Stability. Compute

$$
f^{\prime}(x)=\frac{b k}{(b+x)^{2}}
$$

Then, $f^{\prime}(0)=\frac{b k}{b^{2}}=\frac{k}{b} \geq 1$ since $b \leq k$, by part (a). Thus, if $b<k$, then $N^{*}=0$ is unstable, by the Principle of Linearized Stability. If if $b=k$, the Principle of Linearized Stability does not apply.
Similarly, since $f^{\prime}(k-b)=\frac{b k}{k^{2}}=\frac{b}{k} \leq 1$ since $b \leq k$, by part (a). Thus, if $b<k$, then $N^{*}=k-b$ is asymptotically stable, by the Principle of Linearized Stability. On the other hand, if $b=k$, the Principle of Linearized Stability does not apply.
3. [Problems 1.3.6 (d)(e) on page 29 in Allman and Rhodes]
(d) Determine the equilibrium points of $\Delta P=a P-b P^{2}$.

Solution: Solve the equation $a P-b P^{2}=0, P(a-b P)=0$ to obtain $P^{*}=0$ or $P^{*}=a / b$ (here we are assuming that $b \neq 0$).
(e) Determine the equilibrium points of $P_{t+1}=c P_{t}-d P_{t}^{2}$.

Solution: Here we find the fixed points of $f(P)=c P-d P^{2}$; that is, we solve the equation $f(P)=P$, or $c P-d P^{2}=P$. To solve this equation, we rewrite it as

$$
(c-1) P-d P^{2}=0
$$

from which we get, after factoring that

$$
P[(c-1)-d P]=0
$$

Thus, $P^{*}=0$ or $P^{*}=(c-1) / d$, for $d \neq 0$.
4. [Problems 1.3.7 (d)(e) on page 29 in Allman and Rhodes] For each of the equations in the previous problem, use the principle of linearized stability to determine the stability of each of the equilibrium points.
(d) $\Delta P=a P-b P^{2}$.

Solution: Here, $f(P)=P+a P-b P^{2}$, so that $f^{\prime}(P)=1+a-2 b P$. Thus, $f^{\prime}(0)=1+a$. Hence, $P^{*}=0$ is stable for $-2<a<0$, and unstable for $a>0$ or $a<-2$.
Similarly, since $f^{\prime}(a / b)=1+a-2 b(a / b)=1-a, P^{*}=a / b$ is stable for $0<a<2$, and unstable for $a<0$ or $a>2$.
(e) $P_{t+1}=c P_{t}-d P_{t}^{2}$.

Solution: In this case, $f(P)=c P-d P^{2}$ and so $f^{\prime}(P)=c-2 d P$.
Thus, $f^{\prime}(0)=c$ and so $P *=0$ is stable if $|c|<1$ and unstable if $|c|>1$.
Similarly, since $f^{\prime}((c-1) / d)=2-c, P^{*}=(c-1) / d$ is stable is $1<c<3$, and unstable if $c<1$ or $c>3$.
5. Problems 1.3.11 (a)(b)(c)(d) on page 30 in Allman and Rhodes.

Note: The code for the MATLAB ${ }^{R}$ program onepop may be downloaded from the courses website at http://pages.pomona.edu/~ajr04747.
Many biological processes involve diffusion. A simple example is the passage of oxygen from the from the lung into the bloodstream (and the passage of carbon dioxide in the opposite direction). A simple model views the lung as a single compartment with oxygen concentration L and the bloodstream an adjoining compartment with oxygen concentration B. If, for simplicity, we assume that
the compartments both have volume 1, then in the time span of a single breath the total oxygen $K=L+B$ is constant. If we think of a very small time interval, then the increase of B over this time interval will be proportiaonal to the difference between L and B. That is,

$$
\begin{equation*}
\Delta B=r(L-B) \tag{1}
\end{equation*}
$$

(This experimental fact is sometimes called Fick's Law.)
(a) In what range must the parameter r be for this model to be meaningful? Solution: $0<r<1$ since (i) the oxigen concentration in the bloodstream must increase (with oxygen coming from the lungs) if $L>B$, and decrease of $B>L$; and (ii) even if B is very low, it can not increase by an amount larger than the amount of oxygen available in the lungs.
(b) Use the fact that $L+B=K$ to write the model (1)using only the parameters r and K to describe ΔB in terms of B.
Solution: Solving for L in $L+B=K$ and susbtituting into (1 yields

$$
\Delta B=r(K-2 B)
$$

(c) For $r=0.1$ and $K=1$, and a variety of choices for B_{o}, investigate the MATLAB ${ }^{\circledR}$ program onepop. How do things change is a different valueof r is used?
Solution: For any initial condition B_{o}, the solutions tend to $K / 2=0.5$ as $t \rightarrow \infty$. The result is the same for any r with $0<r<1$.
(d) Algebraically, find the equilibrium point B^{*} for (1. Does this fit with what you saw in part (c)? Can you explain this result intuitively?
Solution: We apply the Principle of Linearized Stability. In this case $f(B)=B+r(K-2 B)$, so that the the fixed point of f is B such that $f(B)=B$, which yields $B^{*}=K / 2$. To determine whether or not B^{*} is stable, compute $f^{\prime}(B)=1-2 r$. Thus, $B^{*}=K / 2$ is stable if $|1-2 r|<1$ or $0<r<1$. This is precisely what we saw in the numerical experiments in part (c). Intuitevly, as time goes on, after many breaths, the oxygen concentration in the bloodstream should reach a steady state which is equal the amoung of oxygen in the lungs.

