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Solutions to Assignment #9

1. Given a discrete random variable X with a finite number of possible values

x1, x2, x3, . . . , xN ,

the expected value of X is defined to be the sum

E(X) =
N∑
i=1

xiP [X = xi].

Use this formula to compute the expected value of the numbers appearing on
the top face of a fair die. Explain the meaning of this number.

Solution: Since P [X = i] =
1

6
for i = 1, 2, 3, 4, 5, 6, it follows that

E(X) =
6∑
i=1

i
1

6
=

1

6

6∑
i=1

i =
1

6

(6)(7)

2
=

7

2
.

Thus, if we roll a die n times, add up the outcomes, and divide by n, the result
will be close to 3.5. □

2. Consider the following random experiment: Assume you have a fair die and you
toss it until you get a six on the top face, and then you stop. Let X denote the
number of tosses you make until you stop.

(a) Explain why X is a discrete random variable. What are the possible value
for X?

Solution: Each time we repeat the experiment, the number of times it takes
to get a “6” might differ from what it took the previous time. □

(b) For each value x of X, compute P [X = x]; this is called the probability
mass function, or pmf, of the random variable X.

Solution: The possible values of X are 1, 2, 3, . . ., and the pmf is

P [X = n] =

(
5

6

)n−1
⋅ 1

6
for n = 1, 2, 3, . . . □
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3. Given a discrete random variable X with an infinite number of possible values

x1, x2, x3, . . .

the expected value of X is defined to be the infinite series

E(X) =
∞∑
i=1

xiP [X = xi].

Use this formula to compute the expected value random variable X of the
previous problem; that is, X is the number of times you need to toss a fair die
until you get a six on the top face.

Solution: In order to do this problem, first we consider the general situation
in which an experiment consists of repeated independent trials until a specified
outcome of probability p, with 0 < p < 1, occurs. We assume that each trial
has two possible outcomes: the one with probability p, and the other with
probability 1 − p. In the case of the fair die, one outcome is to get a six with

p =
1

6
, and the other is the outcome of not getting a six. In the general case,

the pmf is given by

P [X = n] = (1 − p)n−1 ⋅ p for n = 1, 2, 3, . . .

Thus,

E(X) =
∞∑
n=1

n ⋅ P [X = n]

=
∞∑
n=1

n ⋅ (1 − p)n−1 ⋅ p

= p
∞∑
n=1

n(1 − p)n−1.

Observe that n(1 − p)n−1 is the derivative with respect to p of −(1 − p)n. It
then follows that

E(X) = −p
∞∑
n=1

d

dp
[(1 − p)n]

= −p d

dp

[
∞∑
n=1

(1 − p)n

]

= −p d

dp

(
1 − p

1 − (1 − p)

)
since 0 < 1 − p < 1,
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where we have added up the convergent geometric series
∞∑
n=1

(1 − p)n.

Simplifying we get

E(X) = −p d

dp

(
1

p
− 1

)
= −p ⋅

(
− 1

p2

)
=

1

p
.

Thus, for the case p =
1

6
we get that E(X) = 6. Hence, on average, it takes six

tosses to get a six when rolling a fair die. □

4. Let M(t) denote number of bacteria in a colony of initial size No which develop
mutations in the time interval [0, t]. It was shown in the lectures that if there
are no mutations at time t = 0, and if M(t) follows the assumptions of a Poisson
process, then the probability of no mutations in the time interval [0, t] is given
by

P0(t) = P [M(t) = 0] = e−�t

where � > 0 is the average number of mutations per unit time, or the mutation
rate.

Let T > 0 denote the time at which the first mutation occurs.

(a) Explain why T is a random variable. Observe that it is a continuous
random variable.

Solution: Suppose we start observing the bacterial population at time t = 0
when its size is No. If we can observe the first mutation, then T is the time
of that observation. If we repeat the experiment, starting with the same
number of bacteria No, and under the same conditions, then the value for
T will most likely be different from the previously obtained one. Thus, T
is a random variable. □

(b) For any t > 0, explain why the statement

P [T > t] = P [M(t) = 0]

is true, and use it to compute

F (t) = P [T ≤ t].
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The function F (t), usually denoted by FT (t), is called the cumulative dis-
tribution function, or cdf, of the random variable T .

Solution: It T > t, then no mutation has occurred at time t, and therefore
the probability of that event is the same as the probability of the event
[M(t) = 0]. Hence,

P [T > t] = P0(t) = e−�t, for t ≥ 0

and so
FT (t) = P [T ≤ t] = 1 − P [T > t] = 1 − e−�t

for t ≥ 0. On the other, if t < 0 then P [T > t] = P [T > 0] = 1, since T is
nonnegative. It then follows that for t < 0,

P [T ≤ t] = 1 − P [T > t] = 1 − 1 = 0

and therefore

FT (t) =

{
0 if t < 0

1 − e−�t if t ≥ 0.

(c) Compute the derivative f(t) = F ′(t) of the cdf F obtained in the previous
part.

The function f(t), usually denoted by fT (t), is called the probability density
function, or pdf, of the random variable T .

Solution: First, observe that fT (t) =
d

dt
(1 − e−�t) = �e−�t for t > 0. The

function FT is not differentiable at 0. However, we can define

FT (t) =

{
0 if t ≤ 0

�e−�t if t > 0,

and still get a valid pdf. □

5. Given a continuous random variable X with pdf fX , the expected value of X is
defined to be

E(X) =

∫ ∞
−∞

xfX(x)dx.

Use this formula to compute the expected value of the T , where T is the random
variable defined in the previous problem; that is, T > 0 is he time at which the
first mutation occurs for a bacterial colony exposed to a virus at time t = 0,
assuming that there are no mutations at that time. How does this value relate
to the average mutation rate �?
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Solution: E(T ) =

∫ ∞
−∞

tfT (t) dt =

∫ ∞
0

t �e−�t dt. Integrating by parts we get

E(T ) = −te−�t
∣∣∣∞
0

+

∫ ∞
0

e−�t dt

= 0 +

[
−1

�
e−�t

]∞
0

=
1

�
.

Thus, the expected value of T is the reciprocal of �. □


