Solutions to Assignment \#9

1. Given a discrete random variable X with a finite number of possible values

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{N}
$$

the expected value of X is defined to be the sum

$$
E(X)=\sum_{i=1}^{N} x_{i} P\left[X=x_{i}\right]
$$

Use this formula to compute the expected value of the numbers appearing on the top face of a fair die. Explain the meaning of this number.
Solution: Since $P[X=i]=\frac{1}{6}$ for $i=1,2,3,4,5,6$, it follows that

$$
E(X)=\sum_{i=1}^{6} i \frac{1}{6}=\frac{1}{6} \sum_{i=1}^{6} i=\frac{1}{6} \frac{(6)(7)}{2}=\frac{7}{2} .
$$

Thus, if we roll a die n times, add up the outcomes, and divide by n, the result will be close to 3.5 .
2. Consider the following random experiment: Assume you have a fair die and you toss it until you get a six on the top face, and then you stop. Let X denote the number of tosses you make until you stop.
(a) Explain why X is a discrete random variable. What are the possible value for X ?
Solution: Each time we repeat the experiment, the number of times it takes to get a " 6 " might differ from what it took the previous time.
(b) For each value x of X, compute $P[X=x]$; this is called the probability mass function, or pmf, of the random variable X.
Solution: The possible values of X are $1,2,3, \ldots$, and the pmf is

$$
P[X=n]=\left(\frac{5}{6}\right)^{n-1} \cdot \frac{1}{6} \quad \text { for } n=1,2,3, \ldots
$$

3. Given a discrete random variable X with an infinite number of possible values

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

the expected value of X is defined to be the infinite series

$$
E(X)=\sum_{i=1}^{\infty} x_{i} P\left[X=x_{i}\right]
$$

Use this formula to compute the expected value random variable X of the previous problem; that is, X is the number of times you need to toss a fair die until you get a six on the top face.
Solution: In order to do this problem, first we consider the general situation in which an experiment consists of repeated independent trials until a specified outcome of probability p, with $0<p<1$, occurs. We assume that each trial has two possible outcomes: the one with probability p, and the other with probability $1-p$. In the case of the fair die, one outcome is to get a six with $p=\frac{1}{6}$, and the other is the outcome of not getting a six. In the general case, the pmf is given by

$$
P[X=n]=(1-p)^{n-1} \cdot p \quad \text { for } \quad n=1,2,3, \ldots
$$

Thus,

$$
\begin{aligned}
E(X) & =\sum_{n=1}^{\infty} n \cdot P[X=n] \\
& =\sum_{n=1}^{\infty} n \cdot(1-p)^{n-1} \cdot p \\
& =p \sum_{n=1}^{\infty} n(1-p)^{n-1} .
\end{aligned}
$$

Observe that $n(1-p)^{n-1}$ is the derivative with respect to p of $-(1-p)^{n}$. It then follows that

$$
\begin{aligned}
E(X) & =-p \sum_{n=1}^{\infty} \frac{d}{d p}\left[(1-p)^{n}\right] \\
& =-p \frac{d}{d p}\left[\sum_{n=1}^{\infty}(1-p)^{n}\right] \\
& =-p \frac{d}{d p}\left(\frac{1-p}{1-(1-p)}\right) \quad \text { since } 0<1-p<1
\end{aligned}
$$

where we have added up the convergent geometric series $\sum_{n=1}^{\infty}(1-p)^{n}$.
Simplifying we get

$$
\begin{aligned}
E(X) & =-p \frac{d}{d p}\left(\frac{1}{p}-1\right) \\
& =-p \cdot\left(-\frac{1}{p^{2}}\right) \\
& =\frac{1}{p}
\end{aligned}
$$

Thus, for the case $p=\frac{1}{6}$ we get that $E(X)=6$. Hence, on average, it takes six tosses to get a six when rolling a fair die.
4. Let $M(t)$ denote number of bacteria in a colony of initial size N_{o} which develop mutations in the time interval $[0, t]$. It was shown in the lectures that if there are no mutations at time $t=0$, and if $M(t)$ follows the assumptions of a Poisson process, then the probability of no mutations in the time interval $[0, t]$ is given by

$$
P_{0}(t)=P[M(t)=0]=e^{-\lambda t}
$$

where $\lambda>0$ is the average number of mutations per unit time, or the mutation rate.

Let $T>0$ denote the time at which the first mutation occurs.
(a) Explain why T is a random variable. Observe that it is a continuous random variable.
Solution: Suppose we start observing the bacterial population at time $t=0$ when its size is N_{o}. If we can observe the first mutation, then T is the time of that observation. If we repeat the experiment, starting with the same number of bacteria N_{o}, and under the same conditions, then the value for T will most likely be different from the previously obtained one. Thus, T is a random variable.
(b) For any $t>0$, explain why the statement

$$
P[T>t]=P[M(t)=0]
$$

is true, and use it to compute

$$
F(t)=P[T \leq t]
$$

The function $F(t)$, usually denoted by $F_{T}(t)$, is called the cumulative distribution function, or cdf, of the random variable T.
Solution: It $T>t$, then no mutation has occurred at time t, and therefore the probability of that event is the same as the probability of the event $[M(t)=0]$. Hence,

$$
P[T>t]=P_{0}(t)=e^{-\lambda t}, \quad \text { for } \quad t \geq 0
$$

and so

$$
F_{T}(t)=P[T \leq t]=1-P[T>t]=1-e^{-\lambda t}
$$

for $t \geq 0$. On the other, if $t<0$ then $P[T>t]=P[T>0]=1$, since T is nonnegative. It then follows that for $t<0$,

$$
P[T \leq t]=1-P[T>t]=1-1=0
$$

and therefore

$$
F_{T}(t)= \begin{cases}0 & \text { if } t<0 \\ 1-e^{-\lambda t} & \text { if } t \geq 0\end{cases}
$$

(c) Compute the derivative $f(t)=F^{\prime}(t)$ of the cdf F obtained in the previous part.
The function $f(t)$, usually denoted by $f_{T}(t)$, is called the probability density function, or pdf, of the random variable T.
Solution: First, observe that $f_{T}(t)=\frac{d}{d t}\left(1-e^{-\lambda t}\right)=\lambda e^{-\lambda t}$ for $t>0$. The function F_{T} is not differentiable at 0 . However, we can define

$$
F_{T}(t)= \begin{cases}0 & \text { if } t \leq 0 \\ \lambda e^{-\lambda t} & \text { if } t>0\end{cases}
$$

and still get a valid pdf.
5. Given a continuous random variable X with pdf f_{X}, the expected value of X is defined to be

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Use this formula to compute the expected value of the T, where T is the random variable defined in the previous problem; that is, $T>0$ is he time at which the first mutation occurs for a bacterial colony exposed to a virus at time $t=0$, assuming that there are no mutations at that time. How does this value relate to the average mutation rate λ ?

Solution: $E(T)=\int_{-\infty}^{\infty} t f_{T}(t) \mathrm{d} t=\int_{0}^{\infty} t \lambda e^{-\lambda t} \mathrm{~d} t$. Integrating by parts we get

$$
\begin{aligned}
E(T) & =-\left.t e^{-\lambda t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda t} \mathrm{~d} t \\
& =0+\left[-\frac{1}{\lambda} e^{-\lambda t}\right]_{0}^{\infty} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Thus, the expected value of T is the reciprocal of λ.

