Solutions to Part I of Exam 1

1. Consider the difference equation $\Delta N=a N$, where a is a nonzero parameter.
(a) Give an interpretation of the equation as a model for population growth.

Answer: This model assumes that the per-capita growth rate of the population is constant; equivalently, the change in population in a unit of time is proportional to the population density.
(b) Solve the equation given that N_{o} is known.

Solution: Write the equation in the form

$$
N_{t+1}=(1+a) N_{t}
$$

to obtain that

$$
N_{t}=(1+a)^{t} N_{o} \quad \text { for } t=0,1,2, \ldots
$$

(c) Find equilibrium point(s) and test for stability. Which values of a yield stability?

Solution: The only equilibrium point is $N^{*}=0$ since $a \neq 0$. It is stable if $|1+a|<1$, or $-2<a<0$.
2. The following equation models the evolution of a population that is being harvested at a constant rate:

$$
\frac{d N}{d t}=2 N\left(1-\frac{N}{200}\right)-75
$$

(a) Give an interpretation for the model.

Solution: The equation models a population that grows logistically, with intrinsic growth rate $r=2$ and carrying capacity $K=200$, which is also being harvested at a constant rate of 75 units of population per unit of time.
(b) Find equilibrium points, determine the nature of their stability, and sketch a few possible solution curves.

Solution: Write

$$
\begin{aligned}
g(N) & =2 N\left(1-\frac{N}{200}\right)-75 \\
& =-\frac{1}{100}\left(N^{2}-200 N+7500\right) \\
& =-\frac{1}{100}(N-50)(N-150)
\end{aligned}
$$

We then see that equilibrium points of the equation are

$$
N_{1}^{*}=50 \quad \text { and } \quad N_{2}^{*}=150
$$

To determine the nature of the stability of the equilibrium points, consider the graph of g in Figure 1.

Figure 1: Graph of $g(N)$
From the information on the sign of $g(N)$ in the graph in Figure 1 we can sketch possible solutions shown in Figure 2. The sketch

Figure 2: Possible Solutions
in Figure 2 suggests that N_{1}^{*} is unstable and N_{2}^{*} is asymptotically stable.
(c) According to model, what will happen if at time $t=0$ the initial population density is 47 ? What do you conclude?

Solution: According to Figure 2, since $47<N_{1}^{*}$, the population will go extinct in finite time. This is due to over-harvesting.

