## Solutions to Part II of Exam 1

3. Consider the linear first order differential equation

$$
\frac{d u}{d t}=a u+b
$$

where $a$ and $b$ are real parameters with $a \neq 0$.
(a) Find the equilibrium points of the equation.

Solution: Solve the equation $a u+b=0$ to get that

$$
\bar{u}=-\frac{b}{a}
$$

is the only equilibrium point since $a \neq 0$.
(b) Sketch some possible solutions to the equation for the cases $a<0$ and $a>0$ in separate graphs. Which one of these yields stability?

Solution: Suppose first that $a>0$, and write

$$
g(u)=a u+b=a(u-\bar{u})
$$

where $\bar{u}=-\frac{b}{a}$ is the equilibrium point found in the previous part. Since $a>0$, we see that $u^{\prime}(t)>0$ if $u>\bar{u}$ and $u^{\prime}(t)<0$ if $u<\bar{u}$. Thus, $u(t)$ increases for $u>\bar{u}$ and decreases for $u<\bar{u}$. To get an idea of what the concavity of the graphs of solutions is, compute

$$
\begin{aligned}
u^{\prime \prime}(t) & =\frac{d}{d t}\left(u^{\prime}(t)\right) \\
& =\frac{d}{d t}(g(u)) \\
& =g^{\prime}(u) \frac{d u}{d t} \\
& =a^{2}(u-\bar{u})
\end{aligned}
$$

Thus, we see that the graph of $u=u(t)$ is concave up for $u>\bar{u}$ and concave down is $u<\bar{u}$. Putting all the information obtained from the signs of $u^{\prime}(t)$ and $u^{\prime \prime}(t)$ together, we obtain the sketch shown in Figure 1.


Figure 1: Possible Solutions for $a>0$ and $b<0$

Next, consider the case $a<0$, so that $\bar{u}>0$. In this case, using

$$
u^{\prime}(t)=a(u-\bar{u})
$$

and

$$
u^{\prime \prime}(t)=a^{2}(u-\bar{u})
$$

we see that $u(t)$ decreases for $u>\bar{u}$ and increases for $u<\bar{u}$; the graph of $u=u(t)$ is concave down for $u<\bar{u}$ and concave up for $u>\bar{u}$. A sketch of possible solutions is shown in Figure 2. The


Figure 2: Possible Solutions for $a<0$ and $b>0$
sketch in Figure 2 suggests that $\bar{u}$ is stable for the case $a<0$.
(c) Use separation of variables to obtain solutions to the equation.

Solution: Write the equation in the form $\frac{d u}{d t}=a(u-\bar{u})$, where $\bar{u}=-\frac{b}{a}$, and separate variables to get

$$
\int \frac{1}{u-\bar{u}} d u=\int a d t
$$

which yields

$$
\ln |u-\bar{u}|=a t+c_{1},
$$

for some constant $c_{1}$. Exponentiating on both sides of the previous equation, and then solving for $u=u(t)$ yields

$$
\begin{equation*}
u(t)=\bar{u}+C e^{a t} \tag{1}
\end{equation*}
$$

for some constant $C$.
(d) Use your result from the previous part to justify your answers to part (b).

Solution: If $a<0$, it follows from the result in equation (1) that

$$
\lim _{t \rightarrow \infty} u(t)=\bar{u}
$$

Thus, $\bar{u}$ is asymptotically stable in this case.
We also get from (1) that

$$
|u(t)-\bar{u}|=|C| e^{a t}
$$

for all $t \in \mathbf{R}$. Thus, is $a>0$, the distance from $u(t)$ to the equilibrium point, $\bar{u}$, increases as $t$ increases. Hence, if $a>0$, then $\bar{u}$ is unstable.

