## Solutions to Review Problems for Exam \#1

1. Consider the difference equation $X_{t+1}=\lambda X_{t}+a$, where $\lambda$ and $a$ are real parameters, given that $X_{0}$ is known.
(a) Find a closed form solution, $X_{t}$, to the equation and discuss how the behavior of the solution as $t \rightarrow \infty$ is determined by the value of $\lambda$.

Solution: We may proceed by induction to find a formula for $X_{n}$. Starting with the base case:

$$
X_{1}=\lambda X_{o}+a
$$

and going onto the subsequent cases, we find that

$$
\begin{aligned}
X_{2} & =\lambda X_{2}+a \\
& =\lambda\left(\lambda X_{o}+a\right)+a \\
& =\lambda^{2} X_{o}+\lambda a+a
\end{aligned}
$$

and

$$
\begin{aligned}
X_{3} & =\lambda X_{2} 2+a \\
& =\lambda\left(\lambda^{2} X_{o}+\lambda a+a\right)+a \\
& =\lambda^{3} X_{o}+\lambda^{2} a+\lambda a+a
\end{aligned}
$$

These cases suggest that

$$
\begin{equation*}
X_{n}=\lambda^{n} X_{o}+\left(\lambda^{n-1}+\lambda^{n-2}+\cdots+\lambda+1\right) a \tag{1}
\end{equation*}
$$

which may be shown by induction on $n$.
If $\lambda \neq 1$, we may write (1) as

$$
\begin{equation*}
X_{n}=\lambda^{n} X_{o}+\frac{\lambda^{n}-1}{\lambda-1} a . \tag{2}
\end{equation*}
$$

We consider first the case in which $\lambda=1$. In this case, it follows from (1) that

$$
X_{n}=X_{o}+n a ;
$$

Thus, if $a>0$, then $X_{n} \rightarrow+\infty$ as $n \rightarrow \infty$; if $a<0$, then $X_{n} \rightarrow-\infty$ as $n \rightarrow \infty$; and if $a=0$, then $X_{n}$ is constant.
If $\lambda \neq 1$, we consider the following two cases separately: (i) $0<$ $\lambda<1$ and (ii) $\lambda>1$.
(i) If $0<\lambda<1$, it follows from (2) that

$$
\lim _{n \rightarrow \infty} X_{n}=\frac{a}{1-\lambda}
$$

since $\lim _{n \rightarrow \infty} \lambda^{n}=0$ in the case $0<\lambda<1$.
(ii) If $\lambda>1$, we see that $X_{n} \rightarrow \infty$ as $n \rightarrow \infty$ if $a>0$ and $X_{o}>0$. If both $X_{o}$ and $a$ are negative, then $X_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.
(b) Write the difference equation in the form $X_{t+1}=f\left(X_{t}\right)$, for some function $f$.
Give the equilibrium point(s) of the equation and use the principle of linearized stability to determine the nature of their stability.

Solution: The function $f$ is given by

$$
f(x)=\lambda x+a \quad \text { for all } x \in \mathbf{R} .
$$

To find equilibrium points, we solve the equation

$$
f(x)=x
$$

that is, we find the fixed-points of $f$. Solving

$$
\lambda x+a=x
$$

we find that

$$
x=\frac{a}{1-\lambda}
$$

if $\lambda \neq 1$.
The derivative of $f$ is $f^{\prime}(x)=\lambda$. Thus, the principle of linearized stability implies that $x^{*}=\frac{a}{1-\lambda}$ is asymptotically stable if $|\lambda|<$ 1 , and unstable if $|\lambda|>1$. If $|\lambda|=1$, the principle of linearized stability does not apply.
2. Find the equilibrium point of the difference equation $X_{t+1}=X_{t}^{2}-6$, and determine their stability properties.

Solution: Let $f(x)=x^{2}-6$. The fixed-points of the difference equation are solutions of

$$
f(x)=x
$$

or

$$
x^{2}-6=x
$$

which yields $x_{1}^{*}=-2$ and $x_{2}^{*}=3$. In order to determine the stability of the fixed-points, we compute

$$
f^{\prime}(x)=2 x
$$

Observe that $\left|f^{\prime}\left(x_{1}^{*}\right)\right|=4$ and $\left|f^{\prime}\left(x_{2}^{*}\right)\right|=6$. In both cases we get that $\left|f^{\prime}\left(x^{*}\right)\right|>1$. Thus, by the principled of linearized stability, both fixed-points are unstable.
3. Suppose the growth of a population of size $N_{t}$ at time $t$ is dictated by the discrete model

$$
N_{t+1}=\frac{400 N_{t}}{\left(10+N_{t}\right)^{2}}
$$

(a) Find the biologically reasonable fixed points for this difference equation.

Solution: Let $f(x)=\frac{400 x}{(10+x)^{2}}$ for $x \in \mathbf{R}$. Then, the fixed points of the equation are solutions of

$$
f(x)=x
$$

or

$$
\frac{400 x}{(10+x)^{2}}=x
$$

To solve this equation, first write

$$
\frac{400 x}{(10+x)^{2}}-x=0
$$

or

$$
x\left(\frac{400}{(10+x)^{2}}-1\right)=0
$$

from which we get that

$$
x=0 \quad \text { or } \quad(10+x)^{2}=400 .
$$

We therefore get that

$$
x=0, \text { or } x=-30, \text { or } x=10 .
$$

Out of these fixed points, only the first and the last are biologically reasonable. Hence, $N_{1}^{*}=0$ and $N_{2}^{*}=10$.
(b) Determine the stability properties of the equilibrium points found in the previous part.

Solution: Compute the derivative of $f$ to get

$$
f^{\prime}(x)=\frac{400(10-x)}{(10+x)^{3}}
$$

Then

$$
f^{\prime}\left(N_{1}^{*}\right)=\frac{400(10)}{(10)^{3}}=4>1
$$

and therefore $N_{1}^{*}=0$ is unstable.
On the other hand, since

$$
\left|f^{\prime}\left(N_{2}^{*}\right)\right|=0<1,
$$

$N_{2}^{*}=10$ is stable.
(c) If $N_{0}=5$, what happens to the population in the long run?

Answer: $\lim _{t \rightarrow \infty} N_{t}=10$.
4. We have seen that the (continuous) logistic model $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)$, where $r$ and $K$ are positive parameters, has an equilibrium point at $\bar{N}=K$.
(a) Let $g(N)=r N\left(1-\frac{N}{K}\right)$ and give the linear approximation to $g(N)$ for $N$ close to $K$ :

$$
g(K)+g^{\prime}(K)(N-K)
$$

Observe that $g(K)=0$ since $K$ is an equilibrium point.
Solution: Compute the derivative $g^{\prime}(N)$ to get

$$
g^{\prime}(N)=r-\frac{2 r}{K} N
$$

Then,

$$
g^{\prime}(K)=r-\frac{2 r}{K} K=-r
$$

and therefore the linear approximation to $g(N)$ for $N$ near $K$ is

$$
-r(N-K)
$$

(b) Let $u=N-K$ and consider the linear differential equation

$$
\frac{d u}{d t}=g^{\prime}(K) u
$$

This is called the linearization of the equation

$$
\frac{d N}{d t}=g(N)
$$

around the equilibrium point $\bar{N}=K$.
Use separation of variables to solve this equation. What happens to $|u(t)|$ as $t \rightarrow \infty$, where $u$ is any solution to the linearized equation?

Solution: Solve the equation

$$
\frac{d u}{d t}=-r u
$$

to obtain that

$$
u(t)=c e^{-r t}
$$

for some constant $c$. Then,

$$
|u(t)|=|c| e^{-r t}
$$

and therefore

$$
\lim _{t \rightarrow \infty}|u(t)|=0
$$

(c) Use your result in the previous part to give an explanation as to why any solution to the logistic equation that begins very close to $K$ can be approximation by $K+u(t)$, where $u$ is a solution to the linearized equation.

Solution: Let $N(t)$ denote a solution to the logistic equation with $N(0)=N_{o}$ and $N_{o}$ very close to $K$. Then $|u(0)|=\left|N_{o}-K\right|$ is very small and consequently,

$$
|u(t)|=\left|N_{o}-K\right| e^{-r t}<\left|N_{o}-K\right| \quad \text { for all } t>0
$$

Thus, $|u(t)|$ if very small for all $t>0$ and therefore the function $g(N(t))$ is very close to its linear approximation

$$
-r(N-K)=-r u
$$

Consequently, a solution of $\frac{d N}{d t}=g(N)$ can be approximated by a solution of

$$
\frac{d N}{d t}=-r(N-K)
$$

or

$$
\frac{d u}{d t}=-r u .
$$

Thus, $N(t)-K$ can be approximated by $u(t)$ for all $t>0$, and therefore

$$
N(t) \approx K+u(t)
$$

(d) Suppose that $N=N(t)$ is a solution to the logistic equation that starts at $N_{o}$, where $N_{o}$ is very close to $K$. Find an estimate of the time it takes for the distance $|N(t)-K|$ to decrease by a factor of $e$. This time is called the recovery time.

Solution: Since

$$
\begin{gathered}
N(t) \approx K+u(t) \\
N(t) \approx K+\left(N_{o}-K\right) e^{-r t}
\end{gathered}
$$

for all $t>0$. So,

$$
|N(t)-K| \approx\left|N_{o}-K\right| e^{-r t}
$$

for all $t>0$.
We want to know the time $t$ for which

$$
|N(t)-K|=\frac{\left|N_{o}-K\right|}{e} .
$$

This is approximated by the time $t$ for which

$$
\left|N_{o}-K\right| e^{-r t}=\frac{\left|N_{o}-K\right|}{e}
$$

or

$$
e^{-r t}=e^{-1}
$$

This yields that $r t=1$, or $t=1 / r$.
5. [Harvesting] The following differential equation models the growth of a population of size $N=N(t)$ that is being harvested at a rate proportional to the population density

$$
\begin{equation*}
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)-E N \tag{3}
\end{equation*}
$$

where $r, K$ and $E$ are parameters and non-negative parameters with $r>0$ and $K>0$.
(a) Give an interpretation for this model. In particular, give interpretation for the term $E N$. The parameter $E$ is usually called the harvesting effort.

Answer: This equation models a population that grows logistically and that is also being harvested at a rate proportional to the populations density.
(b) Calculate the equilibrium points for the equation (3), and give conditions on the parameters that yield a biologically meaningful equilibrium point. Determine the nature of the stability of that equilibrium point. Sketch possible solutions to the equation in this situation.

Solution: Write

$$
\begin{aligned}
g(N) & =r N\left(1-\frac{N}{K}\right)-E N \\
& =r N\left(1-\frac{N}{K}-\frac{E}{r}\right) \\
& =-\frac{r}{K} N\left[N-K\left(1-\frac{E}{r}\right)\right] .
\end{aligned}
$$

We then see that equilibrium points of equation (3) are

$$
N_{1}^{*}=0 \quad \text { and } \quad N_{2}^{*}=K\left(1-\frac{E}{r}\right) .
$$

The second equilibrium point is biologically meaningful if $N_{2}^{*}>$ 0 , and for this to happen we require that $E<r$; that is, the harvesting effort is less than the intrinsic growth rate.
To determine the nature of the stability of $N_{2}^{*}$ for the case $E<r$, consider the graph of $g$ in Figure 1. Observe from the graph that $g^{\prime}\left(N_{2}^{*}\right)<0$. It then follows from the principle of linearized stability that $N_{2}^{*}$ is asymptotically stable.
The solid curves in Figure 2 show some possible solutions of the equation


Figure 1: Graph of $g(N)$


Figure 2: Possible Solutions
(c) What does the model predict if $E \geq r$ ?

Solution: If $E=r$, then

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-\frac{r}{K} N^{2}<0
$$

for $N>0$. It then follows that $N(t)$ will always be strictly decreasing and so the population will go extinct. In fact, using separation of variables, we obtain that the solution for $N(0)=N_{o}$ is given by

$$
N(t)=\frac{N_{o} K}{K+N_{o} r t},
$$

which tends to 0 as $t \rightarrow \infty$.

On the other hand, if $E>r$, then

$$
\begin{aligned}
\frac{\mathrm{d} N}{\mathrm{~d} t} & =-\frac{r}{K} N\left[N-K\left(1-\frac{E}{r}\right)\right] \\
& =-\frac{r}{K} N^{2}+K N(r-E) \\
& <-\frac{r}{K} N^{2}<0
\end{aligned}
$$

and so again we conclude the $N(t)$ will be always decreasing to 0 .
6. [Harvesting, continued] Suppose that $0<E<r$ in equation (3), and let $\bar{N}$ denote the positive equilibrium point. The quantity $Y=E \bar{N}$ is called the harvesting yield.
(a) Find the value of $E$ for which the harvesting yield is the largest possible; this value of the yield is called the maximum sustainable yield.

Solution: $\bar{N}$ is $N_{2}^{*}$ in the previous problem. Consequently, the yield is given by

$$
Y(E)=E N_{2}^{*}=E K\left(1-\frac{E}{r}\right)=E K-\frac{K}{r} E^{2}
$$

Taking derivatives with respect to $E$, we obtain that

$$
Y^{\prime}(E)=K-\frac{2 K}{r} E \quad \text { and } \quad Y^{\prime \prime}(E)=-\frac{2 K}{r}<0
$$

Thus, by the second derivative test, $Y(E)$ has a maximum when $E=\frac{r}{2}$.
(b) What is the value of the equilibrium point for which there is the maximum sustainable yield?

Solution: The maximum value of $Y$ is

$$
Y(r / 2)=\frac{r}{2} K\left(1-\frac{r / 2}{r}\right)=\frac{r K}{4}
$$

