Solutions to Review Problems for Exam #1

- 1. Consider the difference equation $X_{t+1} = \lambda X_t + a$, where λ and a are real parameters, given that X_0 is known.
 - (a) Find a closed form solution, X_t , to the equation and discuss how the behavior of the solution as $t \to \infty$ is determined by the value of λ .

Solution: We may proceed by induction to find a formula for X_n . Starting with the base case:

$$X_1 = \lambda X_o + a,$$

and going onto the subsequent cases, we find that

$$X_2 = \lambda X_2 + a$$
$$= \lambda (\lambda X_o + a) + a$$
$$= \lambda^2 X_o + \lambda a + a,$$

and

$$X_3 = \lambda X_2 2 + a$$

= $\lambda (\lambda^2 X_o + \lambda a + a) + a$
= $\lambda^3 X_o + \lambda^2 a + \lambda a + a.$

These cases suggest that

$$X_n = \lambda^n X_o + (\lambda^{n-1} + \lambda^{n-2} + \dots + \lambda + 1)a, \qquad (1)$$

which may be shown by induction on n. If $\lambda \neq 1$, we may write (1) as

$$X_n = \lambda^n X_o + \frac{\lambda^n - 1}{\lambda - 1} a.$$
⁽²⁾

We consider first the case in which $\lambda = 1$. In this case, it follows from (1) that

$$X_n = X_o + na;$$

Thus, if a > 0, then $X_n \to +\infty$ as $n \to \infty$; if a < 0, then $X_n \to -\infty$ as $n \to \infty$; and if a = 0, then X_n is constant.

If $\lambda \neq 1$, we consider the following two cases separately: (i) $0 < \lambda < 1$ and (ii) $\lambda > 1$.

(i) If $0 < \lambda < 1$, it follows from (2) that

$$\lim_{n \to \infty} X_n = \frac{a}{1 - \lambda},$$

since $\lim_{n \to \infty} \lambda^n = 0$ in the case $0 < \lambda < 1$.

- (ii) If $\lambda > 1$, we see that $X_n \to \infty$ as $n \to \infty$ if a > 0 and $X_o > 0$. If both X_o and a are negative, then $X_n \to -\infty$ as $n \to \infty$.
- (b) Write the difference equation in the form $X_{t+1} = f(X_t)$, for some function f.

Give the equilibrium point(s) of the equation and use the principle of linearized stability to determine the nature of their stability.

Solution: The function f is given by

$$f(x) = \lambda x + a$$
 for all $x \in \mathbf{R}$.

To find equilibrium points, we solve the equation

$$f(x) = x,$$

that is, we find the fixed-points of f. Solving

$$\lambda x + a = x,$$

we find that

$$x = \frac{a}{1 - \lambda}$$

if $\lambda \neq 1$.

The derivative of f is $f'(x) = \lambda$. Thus, the principle of linearized stability implies that $x^* = \frac{a}{1-\lambda}$ is asymptotically stable if $|\lambda| < 1$, and unstable if $|\lambda| > 1$. If $|\lambda| = 1$, the principle of linearized stability does not apply.

2. Find the equilibrium point of the difference equation $X_{t+1} = X_t^2 - 6$, and determine their stability properties.

Solution: Let $f(x) = x^2 - 6$. The fixed-points of the difference equation are solutions of

$$f(x) = x,$$

or

$$x^2 - 6 = x,$$

which yields $x_1^* = -2$ and $x_2^* = 3$. In order to determine the stability of the fixed-points, we compute

$$f'(x) = 2x.$$

Observe that $|f'(x_1^*)| = 4$ and $|f'(x_2^*)| = 6$. In both cases we get that $|f'(x^*)| > 1$. Thus, by the principled of linearized stability, both fixed-points are unstable.

3. Suppose the growth of a population of size N_t at time t is dictated by the discrete model 400 N

$$N_{t+1} = \frac{400N_t}{(10+N_t)^2}.$$

(a) Find the biologically reasonable fixed points for this difference equation.

Solution: Let $f(x) = \frac{400x}{(10+x)^2}$ for $x \in \mathbf{R}$. Then, the fixed points of the equation are solutions of

$$f(x) = x,$$

or

$$\frac{400x}{(10+x)^2} = x.$$

To solve this equation, first write

$$\frac{400x}{(10+x)^2} - x = 0,$$

or

$$x\left(\frac{400}{(10+x)^2} - 1\right) = 0,$$

from which we get that

$$x = 0$$
 or $(10 + x)^2 = 400$.

We therefore get that

$$x = 0$$
, or $x = -30$, or $x = 10$.

Out of these fixed points, only the first and the last are biologically reasonable. Hence, $N_1^* = 0$ and $N_2^* = 10$.

Math 36. Rumbos

(

(b) Determine the stability properties of the equilibrium points found in the previous part.

Solution: Compute the derivative of f to get

$$f'(x) = \frac{400(10-x)}{(10+x)^3}.$$

Then

$$f'(N_1^*) = \frac{400(10)}{(10)^3} = 4 > 1,$$

and therefore $N_1^* = 0$ is unstable. On the other hand, since

$$|f'(N_2^*)| = 0 < 1,$$

 $N_2^* = 10$ is stable.

c) If
$$N_0 = 5$$
, what happens to the population in the long run?
Answer: $\lim_{t \to \infty} N_t = 10.$

4. We have seen that the (continuous) logistic model $\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$, where r and K are positive parameters, has an equilibrium point at $\overline{N} = K$.

(a) Let $g(N) = rN\left(1 - \frac{N}{K}\right)$ and give the linear approximation to g(N) for N close to K: g(K) + g'(K)(N - K).

Observe that q(K) = 0 since K is an equilibrium point.

Solution: Compute the derivative g'(N) to get

$$g'(N) = r - \frac{2r}{K}N.$$

Then,

$$g'(K) = r - \frac{2r}{K}K = -r$$

and therefore the linear approximation to g(N) for N near K is

$$-r(N-K).$$

Math 36. Rumbos

(b) Let u = N - K and consider the linear differential equation

$$\frac{du}{dt} = g'(K)u.$$

This is called the *linearization* of the equation

$$\frac{dN}{dt} = g(N)$$

around the equilibrium point $\overline{N} = K$.

Use separation of variables to solve this equation. What happens to |u(t)| as $t \to \infty$, where u is any solution to the linearized equation?

Solution: Solve the equation

$$\frac{du}{dt} = -ru$$

to obtain that

$$u(t) = ce^{-rt}$$

for some constant c. Then,

$$|u(t)| = |c|e^{-rt}$$

and therefore

 $\lim_{t \to \infty} |u(t)| = 0.$

(c) Use your result in the previous part to give an explanation as to why any solution to the logistic equation that begins very close to K can be approximation by K+u(t), where u is a solution to the linearized equation.

Solution: Let N(t) denote a solution to the logistic equation with $N(0) = N_o$ and N_o very close to K. Then $|u(0)| = |N_o - K|$ is very small and consequently,

$$|u(t)| = |N_o - K|e^{-rt} < |N_o - K|$$
 for all $t > 0$.

Thus, |u(t)| if very small for all t > 0 and therefore the function g(N(t)) is very close to its linear approximation

$$-r(N-K) = -ru.$$

Consequently, a solution of $\frac{dN}{dt} = g(N)$ can be approximated by a solution of

$$\frac{dN}{dt} = -r(N-K),$$

or

$$\frac{du}{dt} = -ru$$

Thus, N(t) - K can be approximated by u(t) for all t > 0, and therefore

$$N(t) \approx K + u(t).$$

(d) Suppose that N = N(t) is a solution to the logistic equation that starts at N_o , where N_o is very close to K. Find an estimate of the time it takes for the distance |N(t) - K| to decrease by a factor of e. This time is called the *recovery time*.

Solution: Since

$$N(t) \approx K + u(t),$$

 $N(t) \approx K + (N_o - K)e^{-rt}$

for all t > 0. So,

$$|N(t) - K| \approx |N_o - K|e^{-rt}$$

for all t > 0.

We want to know the time t for which

$$|N(t) - K| = \frac{|N_o - K|}{e}.$$

This is approximated by the time t for which

$$|N_o - K|e^{-rt} = \frac{|N_o - K|}{e}$$

or

$$e^{-rt} = e^{-1}$$

This yields that rt = 1, or t = 1/r.

Math 36. Rumbos

5. [Harvesting] The following differential equation models the growth of a population of size N = N(t) that is being harvested at a rate proportional to the population density

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - EN,\tag{3}$$

where r, K and E are parameters and non–negative parameters with r > 0 and K > 0.

(a) Give an interpretation for this model. In particular, give interpretation for the term EN. The parameter E is usually called the harvesting *effort*.

Answer: This equation models a population that grows logistically and that is also being harvested at a rate proportional to the populations density. \Box

(b) Calculate the equilibrium points for the equation (3), and give conditions on the parameters that yield a biologically meaningful equilibrium point. Determine the nature of the stability of that equilibrium point. Sketch possible solutions to the equation in this situation.

Solution: Write

$$g(N) = rN\left(1 - \frac{N}{K}\right) - EN$$
$$= rN\left(1 - \frac{N}{K} - \frac{E}{r}\right)$$
$$= -\frac{r}{K}N\left[N - K\left(1 - \frac{E}{r}\right)\right]$$

We then see that equilibrium points of equation (3) are

$$N_1^* = 0$$
 and $N_2^* = K\left(1 - \frac{E}{r}\right)$

The second equilibrium point is biologically meaningful if $N_2^* > 0$, and for this to happen we require that E < r; that is, the harvesting effort is less than the intrinsic growth rate.

To determine the nature of the stability of N_2^* for the case E < r, consider the graph of g in Figure 1. Observe from the graph that $g'(N_2^*) < 0$. It then follows from the principle of linearized stability that N_2^* is asymptotically stable.

The solid curves in Figure 2 show some possible solutions of the equation $\hfill \Box$

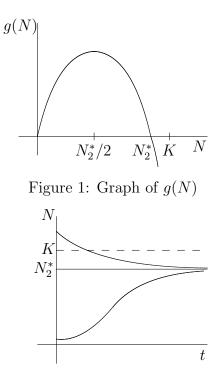


Figure 2: Possible Solutions

(c) What does the model predict if $E \ge r$?

Solution: If E = r, then

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{r}{K}N^2 < 0$$

for N > 0. It then follows that N(t) will always be strictly decreasing and so the population will go extinct. In fact, using separation of variables, we obtain that the solution for $N(0) = N_o$ is given by

$$N(t) = \frac{N_o K}{K + N_o r t},$$

which tends to 0 as $t \to \infty$.

On the other hand, if E > r, then

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{r}{K}N\left[N-K\left(1-\frac{E}{r}\right)\right]$$
$$= -\frac{r}{K}N^2 + KN(r-E)$$
$$< -\frac{r}{K}N^2 < 0,$$

and so again we conclude the N(t) will be always decreasing to 0. \Box

- 6. [Harvesting, continued] Suppose that 0 < E < r in equation (3), and let \overline{N} denote the positive equilibrium point. The quantity $Y = E\overline{N}$ is called the harvesting yield.
 - (a) Find the value of E for which the harvesting yield is the largest possible; this value of the yield is called the *maximum sustainable yield*.

Solution: \overline{N} is N_2^* in the previous problem. Consequently, the yield is given by

$$Y(E) = EN_2^* = EK\left(1 - \frac{E}{r}\right) = EK - \frac{K}{r}E^2$$

Taking derivatives with respect to E, we obtain that

$$Y'(E) = K - \frac{2K}{r}E$$
 and $Y''(E) = -\frac{2K}{r} < 0.$

Thus, by the second derivative test, Y(E) has a maximum when $E = \frac{r}{2}$.

(b) What is the value of the equilibrium point for which there is the maximum sustainable yield?

Solution: The maximum value of Y is

$$Y(r/2) = \frac{r}{2}K\left(1 - \frac{r/2}{r}\right) = \frac{rK}{4}.$$