Solutions to Part I of Exam 2

- 1. Suppose that the rate at which a drug leaves the bloodstream and passes into the urine at a given time is proportional to the quantity of the drug in the blood at that time.
 - (a) Write down and solve a differential equation for the quantity, Q = Q(t), of the drug in the blood at time, t, in hours. State all the assumptions you make and define all the parameters that you introduce.

Solution: By the conservation principle for a one–compartment model,

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = \text{Rate of } Q \text{ in} - \text{Rate of } Q \text{ out,}$$

where

Rate of
$$Q$$
 in $= 0$

and

Rate of
$$Q$$
 out $= kQ$,

for some constant of proportionality k. Thus, Q satisfies the differential equation

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -kQ,$$

which has solution

$$Q(t) = ce^{-kt}$$
 for all $t \ge 0$.

for some constant c.

(b) Suppose that an initial dose of Q_o is injected directly into the blood, and that 20% of that initial amount is is left in the blood after 3 hours. Based on the solution you found in the previous part, write down Q(t) for this situation and sketch its graph.

Solution: If $Q(0) = Q_o$, then $c = Q_o$. Thus,

$$Q(t) = Q_o e^{-kt} \quad \text{for all } t \ge 0.$$

If $Q(3) = 0.2Q_o$, then

$$0.2Q_o = Q_o e^{-3k},$$

Math 36. Rumbos

from which we obtain that

$$k = -\frac{1}{3}\ln(0.2) \approx 0.54.$$

It then follows that

$$Q(t) = Q_o e^{\frac{t}{3}\ln(0.2)} \approx Q_o e^{-0.54t}.$$

 \overline{t}

(c) How much of the drug is left in the patient's body after 6 hours if the patient is given 100 mg initially?

Solution: Compute

$$Q(6) = 100e^{\frac{6}{3}\ln(0.2)}$$

= 100e^{2\ln(0.2)}
= 100 (e^{\ln(0.2)})^2
= 100(0.2)^2
= \frac{100}{25}
= 4.

Thus, there will be 4 mg of the drug left in the patient after 6 hours. $\hfill \Box$

2. Suppose a bacterial colony has N_o bacteria at time t = 0. Let M(t) denote the number of bacteria that develop certain mutation during the time interval [0, t]. Assume that, for small $\Delta t > 0$,

$$M(t + \Delta t) - M(t) \cong a \ (\Delta t) \ N(t), \tag{1}$$

where a is a positive constant, and N(t) is the number of bacteria in the colony at time t.

(a) Give an interpretation to what the expression in (1) is saying. In particular, provide a meaning for the constant, *a*, known as the *mutation rate*.

Solution: The expression in (1) postulates that the number of mutations occurring in the time interval $[t, t + \Delta t]$ is proportional to the length of the interval, Δt , and the number of cells, N(t), present at time t. The constant of proportionality, a, can be interpreted as the fraction of cells that mutate in a unit of time. \Box

(b) Let $\mu(t) = E(M(t))$ denote the expected value of the number of mutations in the time interval [0, t]. It is possible to prove, using the expression in (1), that $\mu = \mu(t)$ is differentiable and satisfies the differential equation

$$\frac{d\mu}{dt} = aN(t). \tag{2}$$

Solve the differential equation in (2) assuming that N(t) grows in time according to a Malthusian model with per-capita growth rate k, and that there are no mutant bacteria at time t = 0.

Solution: Assuming that the bacterial colony is growing according the Malthusian model

$$\begin{cases} \frac{dN}{dt} = kN\\ N(0) = N_o \end{cases}$$

where $k = \frac{\ln 2}{T}$, T being the doubling time or the duration of a division cycle, then $N(t) = N_o e^{kt}$. Substituting this into (2) we get

$$\frac{d\mu}{dt} = aN_o e^{kt},$$

which can be integrated to yield

$$\mu(t) - \mu(0) = \int_0^t a N_o e^{k\tau} d\tau$$
$$= \frac{a}{k} N_o (e^{kt} - 1).$$

If there no mutations at time t = 0, $\mu(0) = 0$, and so

$$\mu(t) = \frac{a}{k} (N_o e^{kt} - N_o),$$

or

$$\mu(t) = \frac{a}{k}(N(t) - N_o).$$

Hence, the average number of mutations which occur in the interval [0, t] is proportional to the population increment during that time period. The constant of proportionality is the mutation rate divided by the growth rate.