Solutions to Part I of Exam 2

1. Suppose that the rate at which a drug leaves the bloodstream and passes into the urine at a given time is proportional to the quantity of the drug in the blood at that time.
(a) Write down and solve a differential equation for the quantity, $Q=Q(t)$, of the drug in the blood at time, t, in hours. State all the assumptions you make and define all the parameters that you introduce.

Solution: By the conservation principle for a one-compartment model,

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=\text { Rate of } Q \text { in - Rate of } Q \text { out, }
$$

where

$$
\text { Rate of } Q \text { in }=0
$$

and

$$
\text { Rate of } Q \text { out }=k Q \text {, }
$$

for some constant of proportionality k. Thus, Q satisfies the differential equation

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=-k Q
$$

which has solution

$$
Q(t)=c e^{-k t} \quad \text { for all } t \geqslant 0
$$

for some constant c.
(b) Suppose that an initial dose of Q_{o} is injected directly into the blood, and that 20% of that initial amount is is left in the blood after 3 hours. Based on the solution you found in the previous part, write down $Q(t)$ for this situation and sketch its graph.

Solution: If $Q(0)=Q_{o}$, then $c=Q_{o}$. Thus,

$$
Q(t)=Q_{o} e^{-k t} \quad \text { for all } t \geqslant 0
$$

If $Q(3)=0.2 Q_{o}$, then

$$
0.2 Q_{o}=Q_{o} e^{-3 k}
$$

from which we obtain that

$$
k=-\frac{1}{3} \ln (0.2) \approx 0.54
$$

It then follows that

$$
Q(t)=Q_{o} e^{\frac{t}{3} \ln (0.2)} \approx Q_{o} e^{-0.54 t}
$$

Figure 1: Sketch of graph of $Q(t)$
(c) How much of the drug is left in the patient's body after 6 hours if the patient is given 100 mg initially?

Solution: Compute

$$
\begin{aligned}
Q(6) & =100 e^{\frac{6}{3} \ln (0.2)} \\
& =100 e^{2 \ln (0.2)} \\
& =100\left(e^{\ln (0.2)}\right)^{2} \\
& =100(0.2)^{2} \\
& =\frac{100}{25} \\
& =4 .
\end{aligned}
$$

Thus, there will be 4 mg of the drug left in the patient after 6 hours.
2. Suppose a bacterial colony has N_{o} bacteria at time $t=0$. Let $M(t)$ denote the number of bacteria that develop certain mutation during the time interval $[0, t]$. Assume that, for small $\Delta t>0$,

$$
\begin{equation*}
M(t+\Delta t)-M(t) \cong a(\Delta t) N(t) \tag{1}
\end{equation*}
$$

where a is a positive constant, and $N(t)$ is the number of bacteria in the colony at time t.
(a) Give an interpretation to what the expression in (1) is saying. In particular, provide a meaning for the constant, a, known as the mutation rate.

Solution: The expression in (1) postulates that the number of mutations occurring in the time interval $[t, t+\Delta t]$ is proportional to the length of the interval, Δt, and the number of cells, $N(t)$, present at time t. The constant of proportionality, a, can be interpreted as the fraction of cells that mutate in a unit of time.
(b) Let $\mu(t)=E(M(t))$ denote the expected value of the number of mutations in the time interval $[0, t]$. It is possible to prove, using the expression in (1), that $\mu=\mu(t)$ is differentiable and satisfies the differential equation

$$
\begin{equation*}
\frac{d \mu}{d t}=a N(t) \tag{2}
\end{equation*}
$$

Solve the differential equation in (2) assuming that $N(t)$ grows in time according to a Malthusian model with per-capita growth rate k, and that there are no mutant bacteria at time $t=0$.

Solution: Assuming that the bacterial colony is growing according the Malthusian model

$$
\left\{\begin{array}{l}
\frac{d N}{d t}=k N \\
N(0)=N_{o}
\end{array}\right.
$$

where $k=\frac{\ln 2}{T}, T$ being the doubling time or the duration of a division cycle, then $N(t)=N_{o} e^{k t}$. Substituting this into (2) we get

$$
\frac{d \mu}{d t}=a N_{o} e^{k t}
$$

which can be integrated to yield

$$
\begin{aligned}
\mu(t)-\mu(0) & =\int_{0}^{t} a N_{o} e^{k \tau} \mathrm{~d} \tau \\
& =\frac{a}{k} N_{o}\left(e^{k t}-1\right)
\end{aligned}
$$

If there no mutations at time $t=0, \mu(0)=0$, and so

$$
\mu(t)=\frac{a}{k}\left(N_{o} e^{k t}-N_{o}\right),
$$

or

$$
\mu(t)=\frac{a}{k}\left(N(t)-N_{o}\right) .
$$

Hence, the average number of mutations which occur in the interval $[0, t]$ is proportional to the population increment during that time period. The constant of proportionality is the mutation rate divided by the growth rate.

