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Chapter 1

Preface

This notes are to be read as a work in progress. They will be updated throughout
the semester. For the most part, they contain more material than can be covered
during the lectures.

The main goal of this course is the exploration of mathematical topics that
have relevance in the study of biological systems. The topics will range from dif-
ference and differential equations to linear algebra and probability. The math-
ematics is motivated by biological questions and developed in that context.
Emphasis will be placed on the process of mathematical modeling; this consists
of

1. translation of questions in Biology into mathematical formalism (variables,
parameters, functions, equations, etc.);

2. formulation of mathematical problems (e.g., Can a given equation or sys-
tem of equations be solved? What are the properties of the solutions?);

3. analysis of the mathematical problem; and

4. translation back into the Biological situation.

Another important aspect of the course will be computation and data anal-
ysis; this provides a link between the mathematical models and the actual bio-
logical systems under consideration.

5



6 CHAPTER 1. PREFACE



Chapter 2

Introduction: An Example
from Microbial Genetics

Bacteria have been known to develop resistance to adverse conditions in their
environment; e.g., toxic agents like antibiotics, certain viruses that kill the bac-
teria, etc. A possible explanation for the development of resistance is that
mutations in the genetic material lead to resistant bacterial variants. A fun-
damental question in microbial genetics is whether these mutations to resistant
strains are the result of exposure to the toxic conditions, or whether they are
random mutations that might have occurred independently of the presence of
the adverse conditions. The first alternative is known as the hypothesis of ac-
quired hereditary immunity, while the second one is known as the hypothesis of
mutation to immunity (see [LD43]). In 1943, Luria and Delbrück [LD43] devised
a study that allowed them to choose between the two hypotheses. They deter-
mined theoretical consequences of each of the two hypotheses in the case of E.
Coli bacteria exposed to a bacteriophage virus which infects the non–resistant
bacteria and causes their destruction. Then, they were able to determine exper-
imentally which predictions actually held true. One of the goals of this course
is to develop the mathematical and computational machinery that will allow us
to deduce consequences from each of the two hypotheses stated in the Luria and
Delbrück 1943 paper, [LD43]. The mathematics needed for this task ranges from
the theory of difference and differential equations to probability and stochas-
tic processes. Our approach to this particular example will be a gradual one.
We start with the study of models of bacterial growth, which are deterministic
in nature, and then proceed to the development of probabilistic or stochastic
models.
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Part I

Deterministic Models
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Chapter 3

Modeling Bacterial Growth:
Discrete Approach

Suppose we are tracking the number Nt of bacteria in a culture, where t denotes
the number of units of time since we stated observing the population. Assume
that when t = 0 we know the number of bacteria to be No. We would like to
predict what Nt will be for any t = 1, 2, 3, . . . In order to do this, we need to
develop a model based on assumptions about how the number of individuals
will change over one unit of time; that is, we need to make assumptions about
the change:

Nt+1 −Nt.
A very important principle in modeling population growth is the following con-
servation principle:

Nt+1 −Nt = bacteria into the culture− bacteria out of the culture (3.1)

in one unit of time.

3.1 Geometric growth or the Malthusian model

The simplest assumption one could make about the terms on the right–hand side
of equation (3.1) is that they are both proportional to the number of bacteria
present at time t; that is,

bacteria into the culture = �Nt (3.2)

and
bacteria out of the culture = �Nt (3.3)

where � and � are positive constants of proportionality. Here, � represents the
birth rate per–capita and � the death rate per–capita of the bacterial population.
Substituting these expressions into equation (3.1) and simplifying yields

Nt+1 = �Nt (3.4)

11



12 CHAPTER 3. DISCRETE BACTERIAL GROWTH

where
� = 1 + �− � (3.5)

is the per-capita growth rate of the population; this is the percent increase (or
decrease) of the population in one unit of time.

Equation (3.4) is the Discrete Malthusian Model of population growth and
is an example of a difference equation. Thus, in the Malthusian Model we are
assuming the growth rate � defined in (3.5) is constant; that is, it is independent
of t and of Nt.

We can solve the difference equation (3.4) as follows:
First, observe that by substituting 0 for t into equation (3.4) we obtain

N1 = N0+1 = �No.

Similarly,
N2 = N1+1 = �N1 = �(�No),

by the previous equation; so that

N2 = N1+1 = �2No = No�
2.

In general, suppose that we have established that for t = n,

Nn = No�
n.

Then, one unit of time later, by (3.4),

Nn+1 = �Nn = �(No�
n) = No�

n+1.

We therefore conclude by Principle of Mathematical Induction that

Nt = No�
t for t = 0, 1, 2, . . . (3.6)

is the solution to the difference equation (3.4).
Observe that the solution (3.4) to the Malthusian model predicts three pos-

sible types of behavior:

1. If � > 1, the population will increases (geometrically) as t increases.

2. If � < 1, the population will decrease as t increases.

3. If � = 1, the population density will remain constant as t varies.

Example 3.1.1 Suppose that a single cell of the bacterium E. coli divides every
twenty minutes. Given that the average mass of an E. coli bacterium is 10−12

gr, if a cell of E. coli was allowed to reproduce without restrain to produce a
super–colony, estimate the time that it would take for the total mass of the
bacterial colony to be that of the earth (approximately 6 × 1024 Kg). (For this
example, assume that the bacteria are not dying; that is, the death rate, �, is
zero.)
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Solution: Let the unit of time be 20 minutes. This is the doubling time of
the bacterial colony. Then, the Malthus difference equation (3.4) reads in this
case

Nt+1 = 2Nt.

Thus, its solution, by (3.6), is

Nt = No2
t for t = 0, 1, 2, . . .

where No = 1. We want to find t so that

2t(10−12 gr) ≥ 6× 1027 gr,

or

2t ≥ 6× 1039.

Solving this inequality for t we obtain

t ≥ ln 6 + 39 ln 10

ln 2
≈ 132.14.

Thus, we may take t = 133, and so it will take 133× (20 min) or 44 hours and
20 minutes, or 3 hours and 40 minutes short of two days, for the bacteria to
overtake the earth. □

3.2 Logistic growth or the Verhulst model

The previous example shows one of the limitations of the Malthusian model
(3.4). If the growth parameter � in (3.5) is bigger than 1, then the population
will experience unlimited growth. This is unrealistic in an environment with
limited or finite resources. In order to make the model more realistic, we need
to modify the assumptions that we made in the derivation of the Malthusian
model (3.4). One of those assumptions is that the rates of bacteria in an out
of the culture in one unit of time (that is the terms on the right–hand side of
the conservation equation (3.1)) were proportional to the population density at
t (see equations (3.2) and (3.3)). We will now relax that assumption.

Substitute equations (3.2) and (3.3) into the conservation equation (3.1) and
divide by Nt to get

Nt+1 −Nt
Nt

= �− �, (3.7)

where � and � are now not assumed to be constant, but may depend on the
population density as well as other factors like the nutrient concentration in the
medium. The left–hand side of equation (4.20) is the per–capita growth rate of
the bacterial colony in one unit of time. Let’s denote this rate by �. In general,
� may depend on many factors; for instance,

� = �(t,Nt, Ct, etc.),
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where Ct denotes the concentration of nutrient in the medium at t. We then
obtain the more general equation

Nt+1 −Nt
Nt

= �(t,Nt, Ct, etc.). (3.8)

Let’s assume for simplicity that � is a function of the the nutrient concentration
only and that it is proportional to it. We then obtain the difference equation

ΔN

Nt
= mCt, (3.9)

where m is a constant of proportionality and we have used the short–hand
notation ΔN for Nt+1 −Nt.

Next, we model the relationship between Nt and Ct.
Assume that 
 units of nutrient are consumed in producing one unit of

population increment. We then have that

ΔC

ΔN
= −
,

where the minus sign indicates that the nutrient concentration decreases as the
bacterial density increases. We then get from (3.9) that

ΔC = −
ΔN = −
mCtNt.

Combining this equation with (3.9) leads to the following system of difference
equations {

Nt+1 = (1 +mCt)Nt
Ct+1 = (1− 
mNt)Ct

(3.10)

This is an example of a nonlinear system since the product of the unknown
quantities N and C appears on the right–hand side of the equations. It models
the interaction between the population density in a bacterial culture and the
nutrient concentration in the culture medium. It is assumed that the bacteria
depend solely on that particular nutrient for survival.

Observe that if we multiply the first equation in (3.10) by 
 and add it to
the second equation, the nonlinear term NtCt can be eliminated and we obtain
a single difference equation


Nt+1 + Ct+1 = 
Nt + Ct.

This is a difference equation for the quantity 
N + C which can be shown to
have the constant solution


Nt + Ct = 
No + Co for t = 1, 2, 3, . . . , (3.11)

where Co and No denote the initial nutrient concentration and bacterial density,
respectively (see Exercise 1 on page 85 of these notes). Put Ao = 
No +Co and
solve for Ct in (3.11) in terms of Nt to get

Ct = Ao − 
Nt.
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Substitute this into the first equation in (3.10) to obtain a single difference
equation for Nt:

Nt+1 = (1 +m(Ao − 
Nt))Nt.

This equation can be re–written as follows

Nt+1 = Nt

(
1 + r

(
1− Nt

K

))
, (3.12)

where r = mAo is called the intrinsic growth rate and K =
1



Ao is called the

carrying capacity of the environment.
The parameter 1/
 is called the yield of the nutrient medium; it gives a

measure of how many new bacteria are produced due to consumption of one
unit of nutrient. Since Ao represents the amount of nutrients present in the
medium in the absence of bacteria (N = 0), K gives the maximum number of
bacteria that the medium can sustain.

In order to understand the meaning of the intrinsic growth rate parameter
r, go back to the general population model (3.8). The per–capita growth rate
function � on the right–hand side of the equation (3.8) was assumed to be
constant in the derivation of the Malthusian model (3.4). In the case of the
logistic model, � was assumed to depend only on the nutrient concentration, C,
in the medium. In (3.9), this dependence was assumed to be given by a simple
proportionality relation

� = mC.

Thus, m gives a measure of the net increment per–capita in the number of
bacteria due to consumption of one unit of nutrients. Since Ao corresponds to
the nutrient concentration in the medium in the absence of bacteria (N = 0),
it then follows that r = mAo is the per–capita growth rate of the bacteria
when the population density is very small, and overcrowding and competition
for resources is not a significant factor on the growth of the population.

The right–hand side of the logistic difference equation (3.12) depends quadrat-
ically on the unknown function Nt; thus, the logistic difference equation is a
nonlinear equation. In contrast to the linear Malthusian model (3.4), in which
we were able to solve the equation explicitly (see (3.6)), we are not going to
be able to find a formula for Nt in the logistic model. Instead, we will need to
resort to computations.

3.2.1 Computing solutions to the logistic model

Example 3.2.1 Consider a bacterial culture with an initial population density
of 1 million cells in a medium that can sustain 12 million cells. Assume that
the intrinsic growth rate is of 50% per unit of time (generation). Calculate
the population densities predicted by the logistic growth model for the first 15
generations. Plot the values in a Population versus Time graph. What does the
model predict?
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Solution: The main purpose of this example is to introduce the use of
MATLABR⃝. This is a very powerful computational software produced by Math-
Works. In this example we start out by thinking of MATLABR⃝ as a very fancy
graphing calculator and we then gradually introduce some of its programming
capabilities, which is actually the main feature of the program.

We let Nt denote the bacterial population in millions at t units of time,
where t = 1, 2, 3, . . . Then the logistic difference equation (3.12) in this case
reads

Nt+1 = Nt

(
1 + 0.5

(
1− Nt

12

))
= Nt + 0.5Nt

(
1− Nt

12

)
. (3.13)

Start with an initial population No = 1 (millions of cells). In MATLABR⃝

we can define a variable N 0 to be equal to 1 using the following assignment
statement:

>> N_0 = 1;

the semicolon at the end of the statement suppresses the program from printing
back what you just typed; this is particularly useful when writing long programs.

Having the value of N_0, we can now use (3.13) to compute the value of a
new variable N_1 as follows

>> N_1 = N_0 + 0.5*N_0*(1-N_0/12)

We could continue in this fashion computing

>> N_{j+1} = N_j + 0.5*N_i*(1-N_j/12)

having computed the value of N_j previously, for j = 1, 2, . . . , 14. However,
that would be an utter under–use of MATLABR⃝. We could instead write the
following short code

p=1;

N=p;

for i=1:15;

p = p + 0.5*p*(1 - p/12);

N=[N p];

end

This code can be written in a .m–file which we could name code1.m. This file
can then be called in from the MATLABR⃝command input window by typing
simply

>> code1

The net result of the code is a row of values
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1.0000

1.4583

2.0989

2.9648

4.0809

5.4275

6.9138

8.3790

9.6432

10.5902

11.2123

11.5803

11.7828

11.8894

11.9442

11.9720

of Nt for t = 0, 1, . . . , 15. These values are all stored under the variable name N.
This is an example of an array. An array is simply a list of data values of the
same type. They are usually displayed as rows or columns or two–dimensional
lists made up of both rows and columns. The mathematical term for a two–
dimensional array is a matrix. Matrices that are listed as rows or columns are
called vectors. MATLABR⃝, which stands for Matrix Laboratory, was originally
designed as a program for computing with matrices. It has since then evolved
into an integrated computational, graphical and programming software.

If we type N in the MATLABR⃝command window, the program will display
the values of N as a row vector. If we type N’ the program displays N as a column
vector. The vector N’ is called the transpose of N. The transposition operator ’
turns rows into columns and vice–versa.

Before we talk about how to plot the values of N that we just computed, we
will turn to the code that we wrote in code1.m in order to understand how it
works. First notice that the code uses three variables: N, p and i. N is where
we want the end result to be, p is an intermediary variable that is used in the
calculations, and i is the index for the for–loop that is used to compute the
values of Nj for j = 1, 2, . . . 15. The first line in the code sets the initial condition
N0 = 1. The second line begins the process of building the array N by putting
the initial value p=1 as the first entry. Lines 3 and 6 set up the for–loop to
run for 15 calculations since we are interested in the first 15 generations. Line
4 computes the next population value based on the previous one using equation
(3.13). Observe that the command

p = p + 0.5*p*(1 - p/12)

is not to be understood as a standard mathematical equation like (3.13). In the
MATLABR⃝programming language, the expression p = p + 0.5*p*(1 - p/12)

is an example of an assignment statement. This assignment statement evaluates
the expression to the right of the equal sign based on the previous value of p, and
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then replaces the value of p to the left of the equal sign by the new computed
value. Finally, the expression

N=[N p]

in line 5 appends or concatenates the new computed value of p to the array N.
In order to obtain the plot of the values of N versus time shown in Figure

3.2.1, type the following sequence of commands

plot([0:15], N, ’k*’)

axis([0 15 0 13])

title(’Logistic model with r=0.5, K=12’)

xlabel(’Time t’)

ylabel(’Population N’)

The figure will appear in a separate graphics window. These commands could
also be placed in a .m–file that you may call plot1.m. Typing plot1 in the
MATLABR⃝command window will then yield the graph in Figure 3.2.1.
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Figure 3.2.1: Solution to Example 3.2.1 generated with MATLABR⃝

Before getting into a discussion of the results of the calculations in this
examples and the graph in Figure 3.2.1, let’s go through each line in the plot1.m
file. The last three lines are self–explanatory; they label the axes and provide
a title for the graph. The MATLABR⃝expression [0:15] in the first line yields
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a row of integers from 0 to 15. The MATLABR⃝plot function in the first line
then takes the array N (the second argument of the function) and plots it versus
the array [0:15] (the first argument of the function) and marks the points on
the graph with a black ∗ (this is prescribed by the ’k*’ in the third argument
of the plot function). The second line sets the range of values along the t–axis
to go from 0 to 15 and the values along the N–axis to go from 0 to 13.

Looking at the plot of the results in Figure 3.2.1, we see that he logistic dif-
ference equation (3.13) predicts that the bacterial density will increase towards
the carrying capacity of 12 millions of cells. At first the rate of increase gets
bigger but at about t = 6 the rate of increase gets smaller and smaller. □

The power of MATLABR⃝lies in its programming functionality. We can mod-
ify the code in the code1.m file so as to incorporate interactive features that will
allow as to input various initial conditions as well as different values for the
parameters r and K. This kind of analysis can yield a lot of information about
the behavior of solutions to the logistic difference equation (3.12). This analysis
will be carried out in the next section.

3.2.2 Numerical analysis of the discrete logistic model

We can use K, the carrying capacity of the medium, as our unit of population
density Nt. This amounts to introducing the new scaled variable

N ′t =
1

K
Nt. (3.14)

Thus, N ′t measures the population by its proportion relative to the carrying
capacity.

Divide the logistic difference equation (3.12) by K to obtain

Nt+1

K
=
Nt
K

(
1 + r

(
1− Nt

K

))
,

which by virtue of (3.14) can be written as

N ′t+1 = N ′t (1 + r (1−N ′t)) . (3.15)

Observe that the difference equation in (3.15) has only one parameter; namely r,
the intrinsic growth rate. In this section we investigate the effect that changing
the parameter r in (3.15) has on the nature of the solution. Before we proceed,
we shall suppress the ’ on the N in (3.15) to obtain

Nt+1 = Nt + rNt(1−Nt). (3.16)

Note that this is equivalent to assuming that K = 1 in (3.12).
The file Logistic.m contains MATLABR⃝code (see Appendix A.1 on page 93)

that solves equation 3.16 for various values of r and various initial conditions.
The program also allows the user to input the range for the time variable t.
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In the following exercises you are asked to use the MATLABR⃝program
Logistic.m to explore how the nature of the solutions to (3.16) changes as
one varies the parameter r and the initial condition No.

1. Start out with the initial condition No = 0.1 and consider the follow-
ing values of r: 1, 1.5, 2, 2.1, 2.25, 2.5 and 2.7. Describe in words the
long term behavior of the solution to (3.16) for each value of r. Is there
any significant change in the structure of the solution? Is there anything
striking?

2. Keep the value of r at 2.7 and try the following initial conditions:

No = 0.1 and No = 0.101.

Before you try the second initial condition, type the MATLABR⃝command
hold on. This will allow you to see the plots of the two solutions on the
same graph. Is there anything that strikes you? What implications does
this result might have on the question of predictability?

3. What happens when r = 3 and t is allowed to range from 0 to 100? How
would you describe the solution?

4. What happens when r = 3.01? Does this result suggest that we need to
impose a restriction on r? What should that restriction be?

In the following section we shall attempt to explain some of the results
obtained in the previous numerical explorations.

3.2.3 Qualitative analysis of the discrete logistic model

We shall begin by re–writing equation (3.16) in the form

Nt+1 = f(Nt), (3.17)

where f is the quadratic polynomial function

f(x) = x+ rx(1− x). (3.18)

We have seen numerically that for the case r = 0.5 solutions of the difference
equation (3.17) tend towards the limiting value N = 1 as t → ∞. This is an
example of what is known as a steady state solution or an equilibrium point.

Definition 3.2.2 For the case of a difference equation (3.17), an equilibrium
point, N∗, is value of N such that, if Nt = N∗, then Nt+1 = N∗. Equivalently,
N∗ is an equilibrium point of the difference equation (3.17), if whenever Nt =
N∗, then ΔN = 0.
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Thus, to find the equilibrium points of (3.17), we need to solve the equation

ΔN = Nt+1 −Nt = f(Nt)−Nt = 0,

or the equation

f(N) = N. (3.19)

Solutions to equation (3.19) are called fixed point of the map f ; thus, equilibrium
points are usually referred to as fixed points as well.

Example 3.2.3 (Fixed points of the logistic equation). Equation (3.19) for the
function f in (3.18) reads

f(x) = x

or
x+ rx(1− x) = x,

which leads to
x(1− x) = 0.

This equation has solutions x = 0 and x = 1. Thus, the equilibrium points of
(3.17) are N = 0 and N = 1.

Finding equilibrium points is an important first step in understanding the
structure of the set of solutions of equation (3.17). We have seen in the numerical
exploration of the previous section that some of those solutions tend towards
the equilibrium point N∗ = 1, and away from N∗ = 0. Others tend to oscillate
around the equilibrium point N∗ for certain values of the parameter r. This
tendency of some equilibrium points of the equation (3.17) to attract other
nearby solutions in the long run is known as stability or asymptotic stability.
One way to measure the tendency of solutions, Nt, of (3.17) to get closer to an
equilibrium point, N∗, is to consider the function Et = Nt −N∗. Observe that
∣Et∣ measures the distance from Nt to N∗.

Example 3.2.4 Consider the equilibrium point N∗ = 1 of equation (3.17) with
f given by (3.18). In this case Et = Nt − 1 so that, from (3.17),

Et+1 = f(Nt)− 1
= Nt + rNt(1−Nt)− 1
= (Nt − 1)− rNt(Nt − 1)
= (Nt − 1)− rNt(Nt − 1) + r(Nt − 1)− r(Nt − 1)
= (1− r)(Nt − 1)− r(Nt − 1)2

= (1− r)Et − rE2
t .

It then follows that Et satisfies the difference equation

Et+1 = �Et − rE2
t (3.20)

where � = 1− r.
The idea behind stability is that if ∣Et∣ starts out being small, then we would

expect ∣Et+1∣ to be even smaller. This is indeed the case provided that ∣�∣ < 1
(that is, if ∣r − 1∣ < 1 or 0 < r < 2) and ∣Eo∣ is small enough.
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Definition 3.2.5 An equilibrium point, N∗, of (3.17), is said to be asymptot-
ically stable if there exists some number �o > 0 such that if Nt is a solution
of (3.17) satisfying ∣No −N∗∣ < �o, then

lim
t→∞

∣Nt −N∗∣ = 0.

Example 3.2.6 (Continuation of Example 3.2.4). In this example we show
that if 0 < r < 2, then N∗ = 1 is an asymptotically stable equilibrium point of
the logistic equation (3.16). According to Definition 3.2.5, we need to show that
if Nt is a solution of (3.17) with ∣No − 1∣ sufficiently small, lim

t→∞
∣Nt − 1∣ = 0.

This is equivalent to showing that

lim
t→∞

∣Et∣ = 0, (3.21)

where Et solves that difference equation (3.20) with ∣�∣ < 1, provided that ∣Eo∣
is sufficiently small.

Since ∣�∣ < 1, we can find a number � > 0 such that ∣�∣+� < 1 (for instance,
we can take � = (1− ∣�∣)/2). Let Et denote a solution of (3.20) satisfying

∣Eo∣ <
�

r
. (3.22)

Taking absolute values on both sides of (3.20) and using the triangle in-
equality (∣a + b∣ ≤ ∣a∣ + ∣b∣, for any pair of real numbers a and b), we obtain
that

∣Et+1∣ ≤ ∣�∣∣Et∣+ r∣Et∣2. (3.23)

Applying this inequality to the case t = 0 we obtain

∣E1∣ ≤ ∣�∣∣Eo∣+ r∣Eo∣2,

which, by virtue of (3.22), implies that

∣E1∣ ⩽ (∣�∣+ �)∣Eo∣. (3.24)

Using the fact that ∣�∣+ � < 1, we get from (3.24) that

∣E1∣ ⩽ ∣Eo∣.

Thus, multiplying by r on both sides and using (3.22), we obtain

r∣E1∣ < �. (3.25)

Applying (3.23) again, this time to the case t = 1, we get

∣E2∣ ⩽ ∣�∣∣E1∣+ r∣E1∣2,

which can be re–written as

∣E2∣ ⩽ ∣�∣∣E1∣+ (r∣E1∣)∣E1∣.
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Thus, using the estimate for ∣E1∣ in (3.25) we obtain

∣E2∣ ≤ (∣�∣+ �)∣E1∣. (3.26)

Next, use the fact that ∣�∣+ � < 1, the estimate in (3.25) and the inequality in
(3.26) to get

r∣E2∣ < �.

We may now proceed by by induction on n to prove that

r∣En∣ < �

and
∣En+1∣ ≤ (∣�∣+ �)∣En∣, for n = 0, 1, 2, 3, . . . (3.27)

Another induction argument then yields that the difference inequality in (3.27)
implies that

∣En∣ ≤ (∣�∣+ �)n∣Eo∣, for n = 1, 2, 3, . . .

Hence, since ∣�∣+ � < 1,
lim
n→∞

∣En∣ = 0,

which is (3.21). This shows that

lim
t→∞

∣Nt − 1∣ = 0,

where Nt is a solution of (3.16) with 0 < r < 2 and No sufficiently close to
1. Hence, N∗ = 1 is an asymptotically stable equilibrium point of (3.16) for
0 < r < 2. □

The procedure outlined in the previous two examples is a rather general
one that applies not only to the logistic equation. Observe that the multiplier
� = 1−r in equation (3.20) is the derivative of the function f(x) = x+rx(1−x)
at the fixed point x = 1. In fact, f ′(x) = 1 + r(1 − x) − rx and therefore
f ′(1) = 1− r. Furthermore, equation (3.20) may be derived from the following
expressions

f(x) = f(1) + f ′(1)(x− 1) +R(x; 1) (3.28)

involving the linear approximation

L(x; 1) = f(1) + f ′(1)(x− 1)

to f around 1, and the error, R(x; 1), incurred in using L(x; 1) to approximate
f(x). In fact, substituting Nt for x in (3.28)) and using the fact that N∗ = 1 is
a fixed point of f , we get that

f(Nt)− 1 = f ′(1)(Nt − 1) +R(Nt; 1).

Recalling that Nt+1 = f(Nt), by (3.17), and that Et = Nt − 1, we see that this
equation leads to (3.20) with R(Nt; 1) = −r(Nt − 1)2.
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In general, given any differentiable function f with fixed point x∗, we can
write

f(x)− x∗ = f ′(x∗)(x− x∗) +R(x;x∗),

where R has the property that

lim
x→x∗

∣R(x;x∗)∣
∣x− x∗∣

= 0.

Therefore, the argument outlined in Example 3.2.6 can be used prove the fol-
lowing result

Theorem 3.2.7 [The Principle of Linearized Stability (Discrete Version)]. Let
N∗ be a fixed point of the differentiable map f , and suppose that

∣f ′(N∗)∣ < 1.

Then, N∗ is an asymptotically stable equilibrium point of the difference equation

Nt+1 = f(Nt).

Remark 3.2.8 Theorem 3.2.7 is only a part of a theorem stated on page 23 in
Allman and Rhodes [AR04]. One can prove more than stated in Theorem 3.2.7.
In fact, if

∣f ′(N∗)∣ > 1,

then N∗ is unstable. However, if ∣f ′(N∗)∣ = 1, no statement about the stability
or instability of N∗ can be concluded.

Example 3.2.9 Use the Principle of Linearized Stability to determine whether
the equilibrium point N∗ = 0 of the logistic equation (3.16) is stable or not.

Solution: In this case, f(x) = x+ rx(1− x) where r > 0. Then,

f ′(x) = 1 + r(1− x)− rx

and so f ′(0) = 1 + r. Thus, ∣f ′(0)∣ = 1 + r > 1, since r > 0, and therefore
N∗ = 0 is unstable for all r > 0. □

The Principle of Linearized Stability implies that, if r > 2 in the logistic
equation (3.16). then solutions starting near the equilibrium point N∗ = 1 will
tend away from that point as t increases. In fact, numerical calculations show
that, when 2 = 2.1 and No = 0.99, the solution will tend away from N∗ = 1
and then settle into an oscillatory pattern about N∗ = 1 for large values of t;
see Figure 3.2.2. The Principle of Linearized Stability does not give information
about the oscillatory behavior of the solution in the long run. In order to get
that information (without having to solve the equation), we need to resort to a
form of graphical analysis known as cobweb analysis.
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Figure 3.2.2: Solution to (3.16) with r = 2.1 and No = .99
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Figure 3.2.3: Numerical Solution of (3.16) with r = 2.1 and No = 0.1
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The idea behind cobweb analysis is the observation that solutions of (3.17)
can be obtained by iterating the map f . In fact, from (3.17)

Nt+1 = f(Nt),

we get that
N1 = f(No),

and therefore
N2 = f(N1) = f(f(No)) = f2(No),

where the superscript 2 on f does not mean that we multiply f by itself, but
rather that we apply f to the result obtained by applying f to No. We can then
see, by induction on n, that

Nn+1 = fn(No) for all n = 0, 1, 2, . . .

The iterates of No under the repeated applications of f can be represented
pictorially in a graph of Nt+1 versus Nt, as shown in Figure 3.2.4. In the figure
we have sketched the graph of Nt+1 = f(Nt), where f(x) = x + 2.1x(1 − x);
that is we are looking at the case r = 2.1. In this particular case, the graph
of Nt+1 = f(Nt) is a parabola opening downwards, going through the points
N = 0 and N = 31/21, and having a maximum value at N = 31/42. We have
also sketched the graph of the 45∘–line Nt+1 = Nt.
We start out with the initial value No = 0.1 sketched on the Nt–axis. To find
N1, we move along a vertical line from No until we hit a point on the curve
Nt+1 = f(Nt). The Nt+1–coordinate of that point is the value of N1. Next,
we move from that point along a horizontal line until we hit a point on the line
Nt+1 = Nt. Projecting down onto the Nt–axis gives N1 on that axis. To obtain
N2, we proceed as before, this time starting from the point (N1, N1) on the line
Nt+1 = Nt. That is we draw a vertical line from that point until we hit a point
of the curve Nt+1 = f(Nt), and then a horizontal line from that point to the
line Nt+1 = Nt. The projection of that last point onto the Nt axis yields N2.
Repeating this procedure many times yields the cobweb–like pattern sketched
in Figure 3.2.4. Observe that after a while the pattern tends to a rectangle
with the line Nt+1 = Nt as a diagonal. The corners of that rectangle on that
diagonal correspond to the two values at which the solution Nt will oscillate
back and forth. This suggests the existence of a periodic solution to 3.16 for
the case r = 2.1, which is corroborated by the numerical solution sketched in
Figure 3.2.3.
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Chapter 4

Modeling Bacterial Growth:
Continuous Approach

In the previous chapter we modeled time, t, as a discrete variable that had
increments at a fixed unit. The population density variable, Nt, in the models
discussed in the previous section was also discrete by nature. After all, we are
simply counting the number of bacteria in a given culture. It is convenient, in
cases where it is appropriate, to assume that both the population density, which
we shall now denote by N(t), and the time t are both continuous variables. In
fact, we will also assume that N is a differentiable function of t. What this
means is that, for any t,

lim
ℎ→0

N(t+ ℎ)−N(t)

ℎ

exists, and is in fact equal to some value which we denote by N ′(t), the derivative
of N at t. We will also assume that N ′(t) is a continuous function of t. The
main reason to make these assumptions is that we can then bring to bear the
power of the theory of differential equations to the study of biological problems.
These assumptions are justified in situations for which

1. N is very large so that an increase (or decrease) of one or several individ-
uals in the population may be considered to be insignificant; for instance,
when modeling bacterial growth, N is measured in millions of cells per
milliliters, so a change of a few individuals is in the order of 10−6 cells per
milliliters;

2. there is an overlap between successive generations; this is the case, for
instance, in human populations; or, if there is no overlap, the time interval
between generations is very short.

We can go from the discrete models that we have discussed to continuous
versions by considering smaller and smaller time increments. For a general
discrete model

Nt+1 = f(Nt) (4.1)

29
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each increment is in one unit of t. We would like to consider a growth process
now in which we are interested in what happens in a fraction ℎ = 1/n, where
n is a positive integer, of a unit of time t; that is, we would like to know what
Nt+ℎ is. If we consider ℎ now to be our new unit of time, this amounts to
introducing a new time variable, � , such that n units of � correspond to one
unit of t. We therefore get the relation n� = t or � = ℎt. We would like to find
out what the growth law expression (4.1) would look like in the new time unit
� ; that is we would like to compute N�+1.

Example 4.0.10 Suppose that the growth law (4.1) is Malthusian; that is,
suppose that

Nt+1 = �Nt. (4.2)

We would like to know what the growth law is in terms of � ; that is we would
like to find a parameter � such that

N�+1 = �N� . (4.3)

We know that the growth law (4.3) predicts that

N� = ��No. (4.4)

We also know that when � = n, the value of the population density, N , should
be the same as that for t = 1. According to (4.2), this should be �No. Thus,
from (4.4), we get

�nNo = �No

from which we get that
� = �1/n = �ℎ.

It then follows from (4.3) that

N�+1 = �ℎN� .

Translating this last equation in terms of t we get that

Nt+ℎ = �ℎNt.

Subtracting Nt from the previous equation and dividing by ℎ ∕= 0 we obtain

Nt+ℎ −Nt
ℎ

=
�ℎ − 1

ℎ
Nt. (4.5)

Thus, if Nt = N(t) is a differentiable function of t, the limit as ℎ → 0 of
the expression on the left–hand side of (4.5) exists and is given by N ′(t). We
therefore have that

N ′(t) = lim
ℎ→0

�ℎ − 1

ℎ
N(t). (4.6)

The limit on the right–hand side of (4.6) can be evaluated by applying L’Hospital’s
Rule:

lim
ℎ→0

�ℎ − 1

ℎ
= lim
ℎ→0

d

dℎ
(�ℎ) = lim

ℎ→0
�ℎ ln(�) = ln(�).
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Hence, (4.6) yields the differential equation

dN

dt
= (ln(�))N. □ (4.7)

4.1 Exponential Growth or Decay

The differential equation (4.7) is the continuous version of the Malthusian
growth model

dN

dt
= kN, (4.8)

where k =
1

N

dN

dt
is the per–capita growth rate, which is this case is assumed

to be constant; in fact, k = ln(�), where � is the growth rate in the discrete
Malthusian model. We can solve (4.8) as follows:

First, rewrite the equation as

1

N

dN

dt
= k,

and then integrated with respect to t to get∫
1

N

dN

dt
dt =

∫
kdt. (4.9)

By the Chain Rule the first integral in (4.9) can be written as

∫
1

N
dN. Then

(4.9) can be written as ∫
1

N
dN =

∫
kdt. (4.10)

The process of going from (4.8) to (4.10) is usually referred to as the method of
separation of variables, since the N and t variables have been “separated” by
the equal sign in (4.10).

The left–hand side in equation (4.10) integrates to∫
1

N
dN = ln ∣N ∣+ c1

where c1 is a constant of integration. If k is a constant, the second integral in
(4.10) integrates to ∫

kdt = kt+ c2

for some constant of integration c2. Substituting the last two integrals into
(4.10) we get

ln ∣N ∣ = kt+ c3, (4.11)

where we have combined the constants c1 and c2 into the new constant c3.
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We would like to solve the equation in (4.11) for N = N(t). In order to do
this, first we exponentiate on both sides of (4.11) to get

∣N ∣ = ekt+c3 = ec3ekt = c4e
kt, (4.12)

where c4 = ec3 , and is therefore a non–negative constant. To get rid of the
absolute value sign in (4.12), we rewrite the equation as

e−kt∣N ∣ = c4,

or
∣e−ktN(t)∣ = c4

for all t ∈ R. Next, since N(t) and the exponential function are continuous
functions, it follows from the last equation that e−ktN(t) must be constant
(why?). We then have that

e−ktN(t) = C for all t ∈ R,

for some constant C, so that

N(t) = Cekt for all t ∈ R, (4.13)

is a solution to the differential equation (4.8). We then see that the continuous
Malthusian Model predicts exponential, unlimited growth if k > 0, and expo-
nential decay if k < 0. If k = 0, the model predicts a stationary or steady state
situation. Observe that these three possibilities correspond to the situations
� > 1, 0 < � < 1, and � = 1, respectively, in the discrete Malthusian model.

Example 4.1.1 Suppose a bacterial colony grows according to the (continuous)
Malthusian model. Find the time it takes for the population to double.

Solution: Suppose that at time t = 0, the population size is No. Then, the
constant C in equation (4.13) is C = No, Thus, the population size as a function
of t is given by

N(t) = Noe
kt for all t ∈ R. (4.14)

Let T denote the time at which N = 2No, It then follows from (4.14) that

Noe
kT = 2No.

Canceling No in the previous equation and solving for T yields

T =
ln(2)

k
. (4.15)

This is called the doubling time of the population. In the case of bacteria, the
doubling time would correspond to the average division cycle. Observe that the
Malthusian model predicts that this time is independent of the population size;
it depends only on the constant, per–capita growth rate k. □
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From the expression (4.15) in the previous example, we also get an expression
for the per–capita growth rate, k, in terms of the doubling time, T :

k =
ln(2)

T
. (4.16)

Substituting this expression for k into the solution to the (continuous) Malthu-
sian model in (4.14), we obtain

N(t) = Noe
( ln(2)

T )t = No

(
eln(2)

) t
T

= No 2t/T .

Thus, if t is measured in units of doubling time, or division cycle in the case of
bacteria, then N(t) is given by

N(t) = No 2t,

where t counts the number of doubling times, or division cycles, from the time
the population size was No.

4.2 General Continuous Growth Models

The procedure outlined in Example 4.0.10 for going from the discrete Malthus
model to the continuous one can be applied to any discrete growth model of the
form

Nt+1 = f(Nt), (4.17)

where f is a known continuous function. Suppose that able to obtain an expres-
sion for Nt+ℎ, where ℎ is a fraction of a unit of t from the growth–law expression
in (4.17), and that

Nt+ℎ = f(Nt;ℎ), (4.18)

where the right–hand side of (4.18) expresses a dependence on the new time
parameter ℎ (recall that, in the case of the Malthusian model, f(Nt;ℎ) = �ℎNt).
Assume also that

lim
ℎ→0

f(N ;ℎ)−N
ℎ

exists and equals g(N). Then, if Nt = N(t) is a differentiable function of t, it
follows that N satisfies the first order differential equation

dN

dt
= g(N), (4.19)

which prescribes the rate of change of the population.
More generally, a population model for a population of size N = N(t) is a

statement of the following conservation principle:

dN

dt
= Rate of individuals in− Rate of individuals out; (4.20)
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that is, any change in the population size has to be accounted for by the number
of new individuals, per unit time, that are added to the population minus those
that are taken out of the population. A more specific form the conservation
equation (4.20) would be

dN

dt
= births− deaths + migrations− harvesting + etc., (4.21)

where all the quantities on the right–hand side of the equation are given per unit
of time; in other words, they are given as rates. Rates in population studies are
usually given per capita; that is, per unit of population. Thus, the conservation
principle (4.21) can be further written as

1

N

dN

dt
= birth rate− death rate + migration rate + etc., (4.22)

where all the rates on the right–hand side are per capita rates.

4.3 Logistic Growth

The term
1

N

dN

dt
on the left–hand side of the conservation equation (4.22) is

called the per capita growth rate of the population. If we assume that this is
a constant, k, we obtain the Malthusian model (4.8). We saw in Section 4.1
that this leads to unlimited, exponential growth in the case k > 0. This is
unrealistic in the case of large population sizes, since the population density, N ,
then becomes an important factor which may effect negatively the growth rate
of the population due to competition for food and resources. In order to account
for the negative effect large population densities have on the per capita growth
rate, we may model it by a linear function of N that decreases with increasing
N ; more specifically, assume that

1

N

dN

dt
= r − r

K
N,

where r, the intrinsic growth rate, approximates the per capita growth rate for
very low population densities, and K is the carrying capacity. This leads to the
(continuous) Logistic growth equation

dN

dt
= rN

(
1− N

K

)
. (4.23)

We will show in Section 4.3.2 that equation (4.23) has a unique solution, N =
N(t), satisfying N(0) = No for any initial population density No. Furthermore,
for any No > 0, the solution exists for all t > 0, and

lim
t→∞

N(t) = K. (4.24)

We will do this by actually deriving a formula for computing N(t), showing
that any solution of (4.23) must in fact be given by that formula, seeing that,
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if No > 0, the formula defining N(t) makes sense for all t > 0, and computing
the limit (4.24). We can, however, obtain a lot of qualitative information about
solutions to (4.23), without actually computing the solution, directly from the
equation. This will be done in the following section.

4.3.1 Qualitative Analysis of the Logistic Equation

The analysis to be carried out in this section for the logistic equation (4.23)
applies to the larger class of continuous growth models in (4.19); namely,

dN

dt
= g(N). (4.25)

In the particular case of the logistic equation (4.23), the function g is given by

g(N) = rN

(
1− N

K

)
and it prescribes the rate of change, N ′(t), of the function N = N(t) for any
value of N(t). Thus, for values of t for which g(N(t)) > 0, the solution N(t)
increases, while for values of t with g(N(t)) < 0, it decreases. Table 4.1 summa-
rizes this information. The horizontal line in the table represents the N–axis.

g(N) + −

0 K
N ′(t) + −

N(t) increases decreases

Table 4.1: Information about N(t)

The values of N for which g(N) = 0 yield the equilibrium solutions

N = 0 and N = K.

Definition 4.3.1 A value of N , denoted N , is said to be an equilibrium
point, or a fixed point, of the equation (4.25), if it solves the equation

g(N) = 0.

The constant function N(t) = N , for all t, is called an equilibrium solution
or a steady state solution.

Thus, equilibrium points of the logistic equation (4.23) correspond to the N–
intercepts of the graph of g(N) versus N pictured in Figure 4.3.1.
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Figure 4.3.1: Graph of g(N) versus N for the logistic equation (4.23)

To obtain more information about the graph of N = N(t) as a function of
t, we may look at the second derivative of N with respect to t:

N ′′(t) =
d

dt
(N ′(t)) =

d

dt
(g(N)) = g′(N) ⋅ dN

dt
,

where we have used the Chain Rule in the last step. Thus, by (4.25),

N ′′(t) = g(N) ⋅ g′(N). (4.26)

Thus, the concavity of the graph of N = N(t) (i.e., whether the graph of
N = N(t) is concave–up or concave–down) is determined by the signs of both
g(N) and its derivative with respect to N , g′(N). Table 4.2 summarizes all
the concavity information on the graph of a solution to the logistic equation
(4.23). As in Table 4.1, the horizontal line in Table 4.2 represents the N–axis.

g(N) + + −

g′(N) + − −

0 K/2 K
N ′′(t) + − +

graph of N(t) concave–up concave–down concave–up

Table 4.2: Concavity of the graph of N = N(t)
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Combining the qualitative information contained in both tables, we can sketch
graphs of possible solutions to (4.23). Figure 4.3.2 shows the two equilibrium
solutions of (4.23), N = 0 and N = K, as well as sketches of possible solutions
for various initial values No. Observe that if 0 < No < K/2, then the graph
of the solution has an inflection point at N = K/2 in accordance with the
information in Table 4.2.

Figure 4.3.2: Graph of possible solutions of the logistic equation (4.23)

The curves in Figure 4.3.2 were sketched assuming that the solutions to the
logistic equation (4.23), for given initial values No > 0, exist for all t > 0. This
will be shown to be the case in the following section. The sketch also suggests
that all these solutions tend towards the value K in the limit as t→∞; thus, the
equilibrium solution N = K is asymptotically stable. This will also be proven
to be the case in the next section. Finally, implied in the sketch is the fact
that solution curves corresponding to different initial values No do not cross, or
intersect. We will see why this is true in the next section as well.

The analysis of the logistic equation (4.23) carried out thus far also provides
information about the stability properties of the equilibrium points N = 0
and N = K. In fact, from Table 4.1 we see that if a solution N = N(t) of the
equation is such that N(0) = No is positive and No < K, then N(t) will increase
towards K as t increases; on the other hand, if No > K, then N(t) will decrease
towards K. Hence N = K is stable (as mentioned in the previous paragraph,
in the next section we will see that N = K is actually asymptotically stable).
Similarly, if No is positive and very close to zero then, since N(t) increases for
0 < N < K (see Table 4.1), N(t) will tend away from 0. Although not shown
in Table 4.1, N(t) will decrease for N < 0, and so if No is negative, N(t) will
also tend away from 0. Thus, N = 0 is unstable.
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4.3.2 Solving the Logistic Equation

In this section we derive a formula for computing a solution of the logistic
equation (4.23) subject to the initial condition N(0) = No, where No is any
given real value. In other words, we find a so–called analytical solution of the
initial value problem (IVP)⎧⎨⎩

dN

dt
= rN

(
1− N

K

)
N(0) = No.

(4.27)

First, note the if No = 0, the it is clear that the constant function N(t) = 0,
for all t, solves the IVP (4.27). Thus, we have a formula for a solution of that
problem in the case No = 0.

Next, assume that No ∕= 0, and suppose that N(t) is a solution of IVP (4.27).

Then, the function u(t) =
1

N(t)
satisfies

du

dt
= − 1

N2

dN

dt
,

by the Chain Rule. Substituting for
dN

dt
its expression given by the logistic

equation (4.23), we get

du

dt
= − 1

N2
rN

(
1− N

K

)
= −r

(
1

N
− 1

K

)
.

Thus, since u =
1

N
, it follows that u satisfies the first order linear differential

equation
du

dt
= −r

(
u− 1

K

)
. (4.28)

Observe that u also satisfies the initial condition

u(0) =
1

N(0)
=

1

No
. (4.29)

Equation (4.28) can be solved by separation of variables:∫
1

u− 1/K
du = −

∫
r dt.

Integration yields

ln

∣∣∣∣u− 1

K

∣∣∣∣ = −rt+ c1

for some constant c1. Thus, exponentiating and solving for u yields

u(t) =
1

K
+ Ce−rt, (4.30)
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for all real values of t and some constant C. Substituting 0 for t in (4.30), and
using the initial condition (4.29), we get that

C =
1

No
− 1

K
.

Thus, from (4.30) we get that

u(t) =
1

K
+

(
1

No
− 1

K

)
e−rt.

Hence, since N =
1

u
, it follows that

N(t) =
1

1

K
+

(
1

No
− 1

K

)
e−rt

,

or

N(t) =
NoK

No + (K −No)e−rt
. (4.31)

Observe that this formula also yields a solution to IVP (4.27) for the caseNo = 0;
namely, the constant function N(t) = 0 for all t.

The formula (4.31) defines a function as long as the denominator on the
right–hand side of (4.31) is not zero. This is so for all t > 0 as long as No > 0.
To see this, suppose that

No + (K −No)e−rt = 0 (4.32)

for some t > 0. It then follows that

No = − Ke−rt

1− e−rt
.

Thus, since r > 0, No < 0 for any t > 0. Therefore, (4.32) cannot happen
for any t > 0 as long as No > 0. It then follows that, if No > 0, the formula
for N(t) in (4.31) yields a function which is defined for all t > 0. Hence, we
conclude that, for No > 0, equation (4.31) defines a solution of IVP (4.27) for
all t > 0. It also follows from that formula that

lim
t→∞

N(t) = K,

since lim
t→∞

e−rt = 0 for any r > 0.

Next, we show that any solution of the IVP 4.27) must be given by the
formula (4.31). In other words, the IVP (4.27) has one and only one solution.
We also say that IVP (4.27) has a unique solution. (Note that the solution will
exist for all t > 0 in the case No > 0; in all cases, though, the solution exists
at least in some interval around 0). So, let N = N(t) denote any solution of
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IVP (4.27), which is not necessarily given by formula (4.31). Assume first that
No ∕= 0. Then, there is some interval, I, around t = 0 such that N(t) ∕= 0 for

all t ∈ I. We can then define a function u given by u(t) =
1

N(t)
fro all t ∈ I.

Then, as in the derivation leading to (4.28), u satisfies u′(t) = −r(u − 1/K).
Put w(t) = ert(u− 1/K) for all t ∈ I. Then, by the product rule,

dw

dt
= rert(u− 1/K) + ertu′ = rert(u− 1/K)− rert(u− 1/K) = 0

for all t ∈ I. It then follows that w(t) = C, a constant, for all t ∈ I. Since

w(0) = u(0)− 1/K = 1/No − 1/K,

it follows that C = 1/No − 1/K = (K −No)/NoK. Thus,

ert(u(t)− 1/K) = (K −No)/NoK,

for all t ∈ I, which can be solved for u to yield

u(t) =
1

K
+

(K −No)e−rt

NoK
=
No + (K −No)e−rt

NoK

for all t ∈ I. Using the fact that N =
1

u
we get that

N(t) =
NoK

No + (K −No)e−rt
,

for all t ∈ I, which is the formula in (4.31). For the case in which No > 0 we
see from the qualitative information in Table 4.1 that N(t) will remain positive
for all t > 0. Thus the interval I can be extended to include the positive half–
line corresponding to t > 0, and so N(t) agrees with the formula in (4.31) for
all t > 0. This proves the uniqueness for the IVP (4.27) at least for the case
No > 0. (The argument for case No < 0 will be omitted here since it is similar
to the one we have just discussed, except that in that case, the interval I does
not include all positive values of t).

We now deal with the case No = 0. In this case we know that we have the
constant function 0 as a solution. The question is then, whether it is possible
for the IVP (4.27) with No = 0 to have another solution differential from the
0 constant function. Suppose there is such a solution, and call it N = N(t).
Then, N solves the logistic equation (4.23), and satisfies the initial condition
N(0) = 0, but, for some t1 > 0, N(t1) ∕= 0. We first look at the case N(t1) > 0.
By the continuity of N(t), we may assume that 0 < N(t1) < K (Why?). Let
N1 = N(t1) and consider the IVP⎧⎨⎩

dy

dt
= ry

(
1− y

K

)
y(0) = N1;

(4.33)
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that is, the IVP (4.27) with N1 instead of No. By what we have already proved,
since N1 > 0, the IVP (4.33) has a unique solution for t > 0 given by

y(t) =
N1K

N1 + (K −N1)e−rt
, (4.34)

for all t > 0. Observe that since N1 < K, the formula for y(t) given in (4.34)
is actually defined for all real values of t; that is, even for negative values of t.
Define a new function z(t) = y(t− t1) for all t ∈ R. Then, z satisfies the IVP⎧⎨⎩

dz

dt
= rz

(
1− z

K

)
z(t1) = N1.

(4.35)

Observe that z is given by the formula

z(t) =
N1K

N1 + (K −N1)e−r(t−t1)
, (4.36)

for all t ∈ R. We now have two functions, z(t) and N(t), both of which solve
the logistic equation (4.23), and both of which take on the same value, N1, at
t = t1. Since N1 > 0, they are both given by the same formula (4.36) for t in
some interval I on which N(t) > 0. So that,

N(t) =
N1K

N1 + (K −N1)e−r(t−t1)
(4.37)

for all t ∈ I. We can make the interval I so large so that I = (a, b), where
0 ≤ a < t1, and

lim
t→a+

N(t) = 0.

We then get by (4.37) and the continuity of N(t) that

N1K

N1 + (K −N1)e−r(a−t1)
= 0,

which implies that N1 = 0. This contradicts the assumption that N1 > 0, and
so it must be the case that the constant function 0 is the only solution of the
IVP (4.27) with No = 0.

The existence and uniqueness result that we have established in this section
for the IVP (4.27) is a special case of a more general result that applies to
continuous models of the form

dN

dt
= g(N),

where g is a differentiable function with continuous derivative. We state it
here without proof and refer the reader to the text “Differential Equations: A
Modeling Approach” by Borrelli and Coleman [BC87]. The theorem stated here
is a special case the Existence and Uniqueness Theorem on page 38 of [BC87].
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Theorem 4.3.2 (Local Existence and Uniqueness) Let g be a differentiable
function with continuous derivative defined in some open interval containing
No. Then, for any to ∈ R, the IVP⎧⎨⎩

dN

dt
= g(N)

N(to) = No

(4.38)

has a solution N = N(t) defined in some open interval I which contains to.
Furthermore, the IVP (4.38) cannot have more than one solution over any open
interval containing to.

A proof of a result more general than this may be found in Appendix A of
[BC87].
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Chapter 5

Modeling Bacterial
Mutations

In this chapter we go back to the Luria and Delbrück study [LD43] mentioned
in the Introduction. Luria and Delbrück were interested in determining the
distribution of E. Coli bacteria that develop resistance to a certain virus over
time. To be more specific, suppose there are No bacteria in a colony at time
t = 0. We would like to know how many bacteria, R(t), will have developed
resistance to the virus t units of time later. According to the mutation to
immunity hypothesis, R(t) is related to the number of random mutations, M(t),
that the bacteria experience in the time interval [0, 1].

The variable M(t) is to be contrasted with the total number of bacteria,
N(t), of the previous part in these notes. In the models of population growth
discussed previously, N(t) was a discrete or continuous variable that could be
determined precisely in terms of the initial number, No, of bacteria and some
parameters used in modeling the growth of the population. In the case of the
discrete Malthusian model, for instance, N(t) = Nt was given by the formula

Nt = No �
t,

where � was the growth rate. In the case, of the continuous logistic model

N(t) =
KNo

No + (K −No)e−rt
,

where r was the intrinsic growth rate and K the carrying capacity. The idea
here is that if one knows the initial population size, No, at time t = 0 as well
as the growth parameters, t units of time later the population size will be given
by the formulas for N(t). If we were to start over with the same initial number
of bacteria, No, and under the same conditions, the number of bacteria in the
colony t units of time later will be the same as the number obtained previously.

Hence, N(t) in the previous models is completely determined by the initial
conditions and the growth parameters. This is not the case for the variableM(t).

45
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A given bacterium might develop a mutation in its genetic material that leads
to resistance, or it might not. We cannot predict with certainty whether a given
bacterium might mutate or not. The best we can do is to obtain a measure or
how likely the bacterium is to develop the mutation. This measure of likelihood
is known as a probability function. Thus, if we start out with No bacteria with
no mutations, t units of time later we might end up with a certain value for
M(t) of bacteria that developed the mutation. If we repeat the experiment,
starting out with the same number of bacteria and under the same conditions,
there is no guarantee that t units of time later we will get the same value for
M(t). Thus, M(t) is not a function in the usual sense that we understand that
term. After a time interval of length t, M(t) can take one a range of values,
and each value has a certain likelihood or probability of occurring. This notion
of a “function” M(t) whose values cannot be predicted, but for which we can
obtain a measure of their likelihood is what is known as a random variable.

5.1 Random Variables

If M(t) denotes the number of bacteria that developed a mutation from and
initial number No in a time interval [0, t], it is reasonable to model it as a
random variable. Roughly speaking, random variables are quantities that are
determined from outcomes of a random experiment. A random experiment is
a process which can be repeated indefinitely under the same set of conditions,
but whose outcome cannot be predicted with certainty before the experiment
is performed. For instance, suppose you start with one bacterium in a medium
conducive to growth; t units of time later we count how many have developed a
mutation that leads to resistance. The number of bacteria that have developed
resistance is a random variable.

Example 5.1.1 Suppose that two bacteria, a and b, can randomly develop a
mutation in a unit of time. Let M denote the number of bacteria out of the
two that develop mutations after one unit of time. Then M can take on the
values 0, 1, or 2. We cannot predict precisely what value M will take on. Any
time we run the experiment of placing the two bacteria under observation and
counting the number of mutations we may get any of the possible values. M is
thus an example of a random variable. The best we can hope for is an estimate
of the probabilities that M can take on any of the possible values; in symbols,
we want to estimate

P [M = k], for k = 0, 1, 2,

where P is denotes a probability function which measures the likelihood of
an event. An event is a possible outcome, or set of outcomes, of a random
experiment. In this particular case, the event denoted by [M = k] represents
the even that k of the two bacteria have developes a mutation. A probability
function assigns a real value between 0 and 1 to an event. A probability of 0
means an impossible event, and a probability of 1 means that the event will
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surely happen. The assignments of probability for events in between depend on
assumptions made about the experiment at hand.1

In order to compute the probabilities of the events [M = k], for k = 0, 1, 2, in
this example, we need to make some assumptions regarding the how mutations
occur. Let A denote the event that bacterium a develops a mutation and b the
event that bacterium B develops a mutation in one unit of time. Suppose we are
told that the probability that a bacterium will develop a mutation is p, where
0 < p < 1 (p is called the mutation rate). We then have that

P (A) = p and P (B) = p.

We assume that the event that A occurs will not affect the probability of event
B. We say that A and B are stochastically independent.

Definition 5.1.2 (Stochastic Independence) We say that events A and B
are stochastically independent if the probability of the joint occurrence of A and
B is the product of the individual probabilities. In symbols,

P (A ∩B) = P (A) ⋅ P (B),

where A ∩B denotes the event that both A and B happen jointly.

In the present example, A ∩ B corresponds to the event that both bacteria
develop a mutation in a unit of time. Thus,

A ∩B = [M = 2].

Thus, the independence assumption implies that

P [M = 2] = P (A) ⋅ P (B) = p ⋅ p = p2.

We next see how to compute P [M = 0] and P [M = 1].

Definition 5.1.3 (Complement of an Event) Given and event, A, the event
that A does not occur is called the complement of A and is denoted by Ac.

Thus, in the present example, Ac is the event that bacterium a does not
develop a mutation in one unit of time. Observe that A and Ac are mutually
exclusive; that is, if A occurs then Ac cannot occur.

Definition 5.1.4 (Mutually Exclusive Events) Events A and B are said to
be mutually exclusive if and only if P (A ∩ B) = 0; in other words, mutually
exclusive events cannot occur jointly.

Definition 5.1.5 Given events A and B, the symbol A ∪ B denotes the event
that either A or B occurs.

If A and B are mutually exclusive, then

P (A ∪B) = P (A) + P (B)

1For example, in the experiment of tossing a “fair die,” it is assumed that all faces of the
die are equally likely; thus, the probability of any given face is 1/6.
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For example, A and Ac are mutually exclusive. It then follows that

P (A ∪Ac) = P (A) + P (Ac).

On the other hand, P (A ∪Ac) = 1. It then follows that

P (A) + P (Ac) = 1,

from which we get that
P (Ac) = 1− P (A).

In the present example, the probability that bacterium a will not mutate is

P (Ac) = 1− p.

Likewise, the probability that bacterium b will not mutate is

P (Bc) = 1− p.

Since Ac and Bc are independent, it follows that

P (Ac ∩Bc) = P (Ac) ⋅ P (Bc) = (1− p) ⋅ (1− p) = (1− p)2.

In other words, the probability that no mutation occurs is (1−p)2. We therefore
that

P [M = 0] = P (Ac ∩Bc) = (1− p)2.

To compute P [M = 1], first observe that

[M = 1] = (A ∩Bc) ∪ (Ac ∩B),

where the events A∩Bc and Ac∩B are mutually exclusive. It then follows that

P [M = 1] = P (A ∩Bc) + P (Ac ∩B).

Next, use the independence assumption to compute

P [M = 1] = P (A ∩Bc) + P (Ac ∩B)

= P (A) ⋅ P (Bc) + P (Ac) ⋅ P (B)

= p ⋅ (1− p) + (1− p) ⋅ p

= 2p ⋅ (1− p).

we then have that

P [M = k] =

⎧⎨⎩
(1− p)2 if k = 0;

2p(1− p) if k = 1;

p2 if k = 2.

(5.1)
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The expression in (5.1) is called the probability distribution of the random
variable M .

Definition 5.1.6 (Distribution of a Discrete Random Variable) Let X
denote a discrete random variable with possible values x1, x2, . . . , xn. The prob-
ability distribution of X, denoted by p

X
, is defined by

p
X

(xi) = P [X = xi], for i = 1, 2, . . . , n.

In Example 5.1.1 we saw that, if M denotes the number of mutations in a
unit of time for two bacteria, then the distribution of M is given by

p
M

(k) =

⎧⎨⎩
(1− p)2 if k = 0;

2p(1− p) if k = 1;

p2 if k = 2,

(5.2)

according to (5.1). Observe that the probabilities on the right–hand side of (5.2)
add up to 1. A quick way to see this is to observe that the expansion of the
square of the binomial expression (1− p) + p is

[(1− p) + p]2 = (1− p)2 + 2p(1− p) + p2, (5.3)

where the left–hand side of the expansion in (5.3) is just 1.
In general, given a discrete random variable, X, with possible values x1, x2, . . . , xn,

and probability distribution p
X

, the following conditions must hold

(i) 0 ⩽ p
X

(xi) ⩽ 1 for all i = 1, 2, . . . , n, and

(ii)

n∑
i=1

p
X

(xi) = 1.

5.1.1 The Binomial Distribution

Consider now three bacteria, a, b and c, and ask the question: how many
mutations will there be in a unit of time? As we did in Example 5.1.1 on page 46,
we define a random variable, M , which counts the number of mutations in one
unit of time. In this case M can take on the values 0, 1, 2 or 3. Equation (5.3)
suggests that the distribution for M in this case can be obtained by expanding
the third power of the binomial expression (1− p) + p:

[(1− p) + p]3 = (1− p)3 + 3p(1− p)2 + 3p2(1− p) + p3. (5.4)

We therefore surmise that the distribution of M in this case is

p
M

(k) =

⎧⎨⎩
(1− p)3 if k = 0;

3p(1− p)2 if k = 1;

3p2(1− p) if k = 2;

p3 if k = 3.

(5.5)
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We can use (5.4) to verify that the probabilities on the right–hand side of (5.5)
indeed add up to 1.

The procedure used to obtain the distribution of M in (5.2) and (5.5) can
be used to obtain the distribution of the number of mutations, M , in unit of
time for N bacteria in a colony. Here we are assuming that each bacterium
has the same probability, p, of developing a mutation in one unit of time (the
mutation rate). We also assume that the event that a given bacterium will
develop a mutation is independent from the event that any other bacterium
mutates. Using the binomial theorem to expand [(1− p) + p]N we obtain

[(1− p) + p]N =

N∑
k=0

N !

k!(N − k)!
pk(1− p)N−k. (5.6)

The binomial expansion in (5.6) suggests that the distribution for the number
of mutations, M , in N bacteria is given by

p
M

(k) =
N !

k!(N − k)!
pk(1− p)N−k for k = 0, 1, 2, . . . , N. (5.7)

Observe that the expressions in (5.2) and (5.5) are instances of (5.7) for the
cases N = 2 and N = 3, respectively. The expression for p

M
(k) in (5.7) gives

the probability that k out of the N bacteria will develop a mutation in one unit
of time. A discrete random variable having the distribution given in (5.7) is
said to follow a binomial distribution.

Definition 5.1.7 (Binomial Distribution) A discrete random variable, Y ,
which counts the number of successes in N independent trials, and having the
distribution

p
Y

(k) =
N !

k!(N − k)!
pk(1− p)N−k for k = 0, 1, 2, . . . , N, (5.8)

is called a binomial random variable with parameters N and p, where p is the
provability of each success.

Definition 5.1.8 (Bernoulli Trials) A random experiment with two mutu-
ally exclusive outcomes, one called a “success” and the other a “failure,” is
called a Bernoulli trial. We associate a random variable, X, with a Bernoulli
as follows: X = 1 if the outcome is a success, and X = 0 is the outcome is a
failure. If the probability of a success is p, then then distribution of X is

p
X

(k) =

{
1− p if k = 0;

p if k = 1.
(5.9)

The random variable X is said to have a Bernoulli distribution with parameter
p.
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Let X1, X2, . . . , XN denote N independent Bernoulli trials and define

Y = X1 +X2 + . . .+XN .

Then, Y counts the number of successes in N independent Bernoulli trials with
probability of success p. In other words Y is a binomial random variable with
parameters N and p.

5.1.2 Expected Value

Definition 5.1.9 (Expected Value of a Discrete Random Variable) Given
a discrete random variable, X, with values x1, x2, . . . , xn, and distribution p

X
,

the weighted average of the values of X,

x1pX
(x1) + x2pX

(x2) + ⋅ ⋅ ⋅+ xnpX
(xn),

is called the expected value of X and is denoted by E(X). We then have that

E(X) =

n∑
k=1

xkpX
(xk)

Example 5.1.10 (Expected Value of a Bernoulli Trial) Let X denote a
Bernoulli random variable with parameter p. Then, the expected value of X is

E(X) = 0 ⋅ p
X

(0) + 1 ⋅ p
X

(1) = p.

Example 5.1.11 (Expected Value of a Binomial Random Variable) Let
X1, X2, ⋅ ⋅ ⋅ , XN denote N independent Bernoulli trials with parameter p, and
put Y = X1 +X2 + ⋅ ⋅ ⋅+XN . We will see later in this course that the expected
value of a sum of random variables is the sum of the expected values of the
individual summands. We then have that

E(Y ) = E(X1) + E(X2) + ⋅ ⋅ ⋅+ E(XN ) = Np.

Thus, the expected value of a binomial random variable, Y , with parameters N
and p is

E(Y ) = Np.

An interpretation of the expected value is provided by the law of large num-
bers in the theory of probability. Suppose that observations, Y1, Y2, . . . , Yn, are
obtained from a random experiment, all of which have the same expected value
as a random variable Y . Then, the average of the observations,

Y n =
Y1 + Y2 + ⋅ ⋅ ⋅+ Yn

n
,

will tend in some sense to the expected value of Y as n → ∞. More precisely,
letting � denote E(Y ), for every " > 0

lim
n→∞

P [∣Y n − �∣ < "] = 1;
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with very high probability, the average values of the observations can be made
arbitrarily close to the expected value of Y . So, in some sense the average of a
set of observations from a distribution can be used to approximate the expected
value of the distribution; that is,

Y n ≈ E(Y ) when n is large.

In the binomial random variable example we have that

Y n ≈ Np when n is large.

we can therefore use the average of a set of observations to estimate the mutation
rate, p:

p ≈ 1

N
Y n (5.10)

5.1.3 Estimating Parameters

The expression in (5.10) is an example of parameter estimation. In this case,
the parameter we are estimating, p, is the mutation rate. Suppose that that
we count the number of bacteria that develop a mutation leading to resistance
in a Luria–Delbrück experiment. This is done for a sample of 20 cultures, each
containing about 5.6×108 bacteria. Table 5.1 shows the distribution of resistant
bacteria for this particular sample in one of then experiments performed by Luria
and Delbrück [LD43, page 504]. If we assume that the distribution of resistant

Table 5.1: Distribution of Resistant Bacteria in Experiment No. 16

Resistant Number of
Bacteria Cultures

0 11
1 2
3 1
5 2
6 1
35 1
64 1
107 1

bacteria for this experiment follows a binomial distribution with parameters
N = 5.6 × 108 and p, then, according to (5.10), an estimate for the mutation
rate, p, is given by

p̂ =
1

N
Y n, (5.11)
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where Y n is the average of the n = 20 observations

Y1 = Y2 = ⋅ ⋅ ⋅ = Y11 = 0;
Y12 = Y13 = 1;
Y14 = 3;
Y15 = Y16 = 5;
Y17 = 6;
Y18 = 35;
Y19 = 64;
Y20 = 107.

The average of these observations is Y 20 = 11.35. Thus, using (5.11) we obtain
the following estimate for the mutation rate, under the assumption that the
distribution of resistant bacteria is binomial,

p̂ =̇ 2.03× 10−8.

Some remarks are in order.

Remark 5.1.12 The estimate for the mutation rate, p, that we just obtained is
based on the assumption that the distribution of resistant bacteria is binomial.
We also assumed that mutations had not been occurring prior to exposure to
the virus. We will see later that both assumptions are not correct. We will
then come up with a model for the distribution of resistant bacteria that takes
into account bacterial growth and the fact that mutations leading to resistance
might have been occurring randomly prior to exposure. The new model will
lead to a better estimate of p.

Remark 5.1.13 The estimate that we got for p reveals that the mutation rate
is a very small probability, in the order of 10−8. Observe also that the parameter
N , the size of the culture, is very large, in the order of 108. In the following
section we will explore what happens to the binomial distribution in (5.8) as N
gets very large and p gets very small. We will do this for the special case in
which the expected value, Np, remains constant. This will lead to the Poisson
distribution, which is an example of a discrete random variable that can take
on infinitely many values, 0, 1, 3, . . ..

5.1.4 The Poisson Distribution

In this section we consider the situation in which there is a sequence of binomial
random variables, YN , with parameters N and p satisfying E(YN ) = Np = �,
where � is a constant parameter. We would like to see what happens as N →∞.
These conditions put together will imply that

p =
�

N
(5.12)

will tend to 0. It is hoped that this limiting process will model a situation
in which there is a very large number of independent Bernoulli trials with the
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probability of a success being very small. This is precisely the situation of a
large bacterial colony in which the mutation rate is very small presented in the
previous section.

Starting with the formula for binomial probability distribution in (5.8) and
substituting for p given by (5.12) we have, for 0 ⩽ k < N ,

p
YN

(k) = N(N − 1) ⋅ ⋅ ⋅ (N − k + 1)
1

k!

(
�

N

)k (
1− �

N

)N−k
,

which can be written as

p
YN

(k) =

(
1− 1

N

)(
1− 2

N

)
⋅ ⋅ ⋅
(

1− k − 1

N

)(
1− �

N

)−k
�k

k!

(
1− �

N

)N
,

or

p
YN

(k) =
�k

k!
⋅ a(k, �,N) ⋅ b(�,N), (5.13)

where

a(k, �,N) =

(
1− 1

N

)(
1− 2

N

)
⋅ ⋅ ⋅
(

1− k − 1

N

)
(

1− �

N

)k , (5.14)

and

b(�,N) =

(
1− �

N

)N
. (5.15)

For a fixed values of k = 0, 1, 2, . . . and �, we see from (5.14) that

lim
N→∞

a(k, �,N) = 1;

and, for fixed �, (5.15) yields that

lim
N→∞

b(�,N) = e−�.

It then follows from (5.13) that

lim
N→∞

p
YN

(k) =
�k

k!
e−�. (5.16)

The right–hand side of the equation in (5.16) is the probability distribution
function of discrete random variables which can take on an infinite number of
values k = 0, 1, 2, . . ., known as the Poisson random variable with parameter
�.

Definition 5.1.14 (Poisson Distribution) A discrete random variable, Y ,
which can take on the values k = 0, 1, 2, . . ., is said to have a Poisson distribution
with parameter �, if

p
Y

(k) =
�k

k!
e−� for k = 0, 1, 2, . . . . (5.17)
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We will see in a later section how the Poisson distribution arises in applications
in the context of random processes. We will next compute the expected value
and variance of Poisson random variable with parameter �.

5.1.5 Expected Value and Variance of the Poisson Distri-
bution

Let X denote a discrete random variable which takes on a sequence of values

x0, x1, x2, x3, . . .

Suppose that we know the probability mass function for X; that is, suppose
that we know

P [X = xi] for each i = 0, 1, 2, . . .

We define the expected value, E(X), of X to be given the infinite series

E(X) =

∞∑
i=0

xiP [X = xi]. (5.18)

Example 5.1.15 Let Y be a Poisson random variable with parameter � . Then
the values of Y are

m = 0, 1, 2, 3, . . .

each with probability

P [Y = m] =
�m

m!
e−� for m = 0, 1, 2, 3, . . . (5.19)

by (5.17). Thus, applying the formula (5.18) for the expected value of Y ,

E(Y ) =

∞∑
m=0

m ⋅ �
m

m!
e−�

=

∞∑
m=1

m ⋅ �
m

m!
e−�

= e−�
∞∑
m=1

�m

(m− 1)!
.

Making the change of variables k = m− 1, we obtain

E(Y ) = e−�
∞∑
k=0

�k+1

k!

= e−�
∞∑
k=0

�k ⋅ �
k!

= � e−�
∞∑
k=0

�k

k!
.
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Recognizing the last series as the Mclaurin series expansion for e�, we then have
that

E(Y ) = �.

As an application of the previous example. Suppose that M counts the
number of mutations in a large bacterial colony in a unit of time. Assuming
that the distribution of M is binomial with parameters N and p, where N is
the (large) size of the bacterial colony and p is the (very small) mutation rate,
we can approximate M by a Poisson random variable with parameter � = Np.
The previous example shows that the expected value of the random variable M
is approximately �. This means that, on average, we should expect � mutations
in a unit of time. We then have an interpretation for the parameter � as the
average number of mutations per unit time. What this means in terms of the
Luria and Delbrück experiment is that, if we are able to count the number of
mutations in a unit of time that occur after exposure to the virus, and repeat the
experiment many times, then the average number of mutations should be close
to �. Of course, there will be some variability in the mutation counts for each
experiment. This variability can be measured since we know the distribution
for the random variable M , at least approximately.

Variability in the values of a random variable, X, can be measured by a
quantity called the variance of X, which is denoted by var(X). We van compute
var(X), for a discrete random variable X, as follows: Suppose the values of X
form a sequence

x0, x1, x2, x3, . . .

and let � = E(X) denote the expected value of X; the parameter � is usually
called the mean of the distribution of X. Then,

var(X) =

∞∑
i=0

(xi − �)2P [X = xi]. (5.20)

That is, the variance of X is the expected square–deviation of the values of X
from the mean.

The formula for var(X) in (5.20) can be re–written as follows

var(X) =

∞∑
i=0

(xi − �)2P [X = xi]

=

∞∑
i=0

(x2
i − 2�xi + �2)P [X = xi]

=

∞∑
i=0

x2
iP [X = xi]−

∞∑
i=0

2�xiP [X = xi] +

∞∑
i=0

�2P [X = xi]

=

∞∑
i=0

x2
iP [X = xi]− 2�

∞∑
i=0

xiP [X = xi] + �2
∞∑
i=0

P [X = xi]

=

∞∑
i=0

x2
iP [X = xi]− 2�E(X) + �2,
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where we have used the definition of E(X) in (5.18) and the fact that the
probability that X attains any of its values should be 1. Thus, since E(X) = �,
we obtain

var(X) =

∞∑
i=0

x2
iP [X = xi]− �2. (5.21)

Example 5.1.16 Let X = M ; that is X denotes the number of mutations in
a bacterial culture that occur in one unit of time. Then the values of X are

m = 0, 1, 2, 3, . . .

each with probability

P [X = m] =
�m

m!
e−� for m = 0, 1, 2, 3, . . .

by (5.17).

By the calculation in the previous example, � = E(X) = � in this case.

Next, we compute

∞∑
i=0

x2
iP [X = xi] =

∞∑
m=0

m2 ⋅ �
m

m!
e−�

=

∞∑
m=1

m2 ⋅ �
m

m!
e−�

= e−�
∞∑
m=1

m ⋅ �m

(m− 1)!
.

Making the change of variables k = m− 1, we obtain

∞∑
i=0

x2
iP [X = xi] = e−�

∞∑
k=0

(k + 1)
�k+1

k!

= �e−�

( ∞∑
k=0

k ⋅ �
k

k!
+

∞∑
k=0

�k

k!

)

= �e−�

( ∞∑
k=1

�k

(k − 1)!
+ e�

)
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Making the change of variables n = k − 1 in the last series we get

∞∑
i=0

x2
iP [X = xi] = �e−�

( ∞∑
n=0

�n+1

n!
+ e�

)

= �e−�

(
�

∞∑
n=0

�n

n!
+ e�

)

= �e−�
(
�e� + e�

)
= �2 + �.

Thus, by formula (5.21), var(X) = �2 + � − �2 = �. Hence, the variance of
X = M is the same as its mean.

Example 5.1.17 (Another Estimate of the Mutation Rate) We may use
the fact that � is the average number of mutations in a unit of time to estimate
the mutation rate p. We do this my estimating � from the data by observing
from (5.19) that

P [M = 0] = e−�,

since 0! = 1 and �0 = 1, we can use the proportion of cultures in Luria and
Delbrück Experiment No. 16 to estimate �. We do this by first approximating

P [M = 0] ≈ 11

20
= 0.55

(see Table 5.1 on page 52 in these notes).
Thus,

e−� ≈ 0.55,

from which we get that
� ≈ − ln(0.55) ≈ 0.6.

Thus,

p ≈ �

N
≈ 0.6

5.6× 108
≈ 1.1× 10−9.

We will see in a later section how to improve the estimate for the mutation
rate obtained in the previous example.

5.2 The Poisson Random Process

We would like to incorporate the fact that the bacterial population is growing
when modeling random mutations. This entails introducing a time variable, t.
Thus, for each t, let M(t) denote a random variable whose values are any of the
numbers

0, 1, 2, 3, . . .
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That is, M(t) is a discrete random variable for each time t. Notice that the
time variable, t, can be modeled as a continuous variable. M(t), where t is
continuous, is an example of a random process.

We are interested in computing the probability that M(t) attains each of
the values 0, 1, 2, . . . for each time t. In symbols, we would like to compute

P [M(t) = m] for m = 0, 1, 3, . . . and t > 0.

We shall denote P [M(t) = m] by Pm(t).
We would like to compute Pm(t), for each m = 1, 2, 3, . . . and t > 0, under

the following assumptions:

(i) P0(0) = P [M(0) = 0] = 1; that is, initially no bacterium has mutated
into a strain resistant to the virus. It then follows that Pm(0) = 0 for all
m ≥ 1.

(ii) The probability that any bacterium develops a mutation in a short time
interval [t, t + Δt] depends only on Δt and not on the number of mutant
bacteria at previous times.

(iii) The probability of a new mutation in the short interval [t, t + Δt] is pro-
portional to Δt; in symbols

P (new mutation in [t, t+ Δt]) = �Δt,

where � > 0 is a constant of proportionality.

(iv) Δt is so small that the probability of two or more mutations occurring in
the short time interval [t, t+ Δt] is zero.

In order to determine Pm(t) for each m = 1, 2, 3, . . . and t > 0, first we need
to estimate Pm(t+ Δt) for Δt small enough. The picture below can be used to
better understand the process of going from time t to the time t + Δt. Each
possible value of the variable M(t) is represented by a circle and is called a
state. Thus, a state represents the number of mutations at any given stage.

j j j j j- - - - -
�Δt �Δt �Δt �Δt �Δt

1− �Δt 1− �Δt 1− �Δt 1− �Δt 1− �Δt

0 1 2 3 4 . . .
� � � � �� � � � � � � � � �

? ? ? ? ?

Figure 5.2.1: State diagram for M(t)

The arrows indicate the probabilities of going from one state to the next, or
those of remaining in the same state, in a short time interval [t, t + Δt]. For
instance, if at time t there are no mutants in the colony (i.e., the system is in
state 0 at that time), then at time t + Δt there might a bacterium that has
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developed a mutation. The system would then go from state 0 to state 1 in the
time interval [t, t+ Δt]; the probability of this occurrence is �Δt by assumption
(iii), and this is indicated by the arrow in the diagram that goes from state
0 to state 1. On the other hand, there might not be a new mutation in the
time interval [t, t+ Δt]; the probability of this occurring is 1−�Δt (why?), and
this is shown by the arrow that starts at state 0 and which winds back again
to 0. The picture in Figure 5.2.1 is an example of a state diagram. Observe
that assumption (iv) is implicit in the state diagram since the states can only
increase by 1 and not by 2 or more; thus, arrows from a given state either return
to that state or go to the next one.

The state diagram in Figure 5.2.1 can be used to compute Pm(t+ Δt) given
that we know Pm(t). We start out with the case m = 0 as follows

P0(t+ Δt) = P0(t) ⋅ P (no new mutations in [t, t+ Δt]
∣∣M(t) = 0),

where the notation P (A
∣∣B) denotes the conditional probability of event A given

the event B. Then, by the independence2 assumption (ii),

P0(t+ Δt) = P0(t) ⋅ P (no new mutations in [t, t+ Δt]).

It then follows by assumption (iii) that

P0(t+ Δt) = P0(t) ⋅ (1− �Δt),

or
P0(t+ Δt) = P0(t)− �ΔtP0(t).

From the last equation we get

P0(t+ Δt)− P0(t)

Δt
= −�P0(t);

Thus, letting Δt→ 0 we conclude that P0(t) is differentiable and

dP0

dt
= −�P0;

that is, P0(t) a first order differential equation. This differential equation can
be solved by separation of variables to yield

P0(t) = Ce−�t,

for some constant C. Since P0(0) = 1 by assumption (i), it follows that C = 1,
and so the probability of no mutations in the colony at time t is given by

P0(t) = e−�t (5.22)

for all t ≥ 0.

2Events A and B are said to be independent, if P (A
∣∣B) = P (A).
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We next proceed to compute P1(t). Using the state diagram in Figure 5.2.1
we obtain that

P1(t+ Δt) = P0(t) ⋅ �Δt+ P1(t) ⋅ (1− �Δt), (5.23)

since, according to the state diagram, the system can get to state 1 at t + Δt
via two routes: (i) from state 0 through a new mutation which occurs with
probability �Δt, or (ii) from state 1 if no new mutation occurs in the time
interval [t, t+ Δt], and the probability of this occurrence is 1− �Δt.

Rearranging equation (5.23) we obtain

P1(t+ Δt)− P1(t)

Δt
= −�P1(t) + �P0(t);

thus, letting Δt → 0, we conclude that P1 is differentiable and satisfies the
differential equation

dP1

dt
= −�P1 + �P0(t) (5.24)

or, using (5.22),
dP1

dt
= −�P1 + �e−�t. (5.25)

The differential equation (5.25) can be solved as follows: Rewrite the equa-
tion as

dP1

dt
+ �P1 = �e−�t

and multiply by e�t to get

e�t
dP1

dt
+ �e�tP1 = � (5.26)

Observe that, by the Product Rule,

d

dt
(e�tP1) = e�t

dP1

dt
+ �e�tP1,

and so the differential equation in (5.26) reduces to

d

dt
(e�tP1) = �. (5.27)

This last equation can be integrated to yield

e�tP1 = �t+ C,

for some arbitrary constant C, and therefore

P1(t) = �t e−�t + Ce−�t

for all t ≥ 0.
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Using the initial condition P1(0) = 0, which follows from assumption (i) for
the random process M(t), we get that C = 0, and therefore

P1(t) = �t e−�t (5.28)

for all t ≥ 0.
To compute P2(t) we proceed in a way similar to that used to compute P1(t).

From the state diagram in Figure (5.2.1) we get that

P2(t+ Δt) = P1(t) ⋅ �Δt+ P2(t) ⋅ (1− �Δt),

from which we are led to the differential equation

dP2

dt
= −�P2 + �P1(t) (5.29)

or, using (5.28),
dP2

dt
= −�P2 + �2te−�t. (5.30)

We can solve this differential equation as we solved (5.25), by first rearranging
and multiplying by e�t to get

e�t
dP2

dt
+ �e�tP2 = �2t,

and then re–writing the left–hand side of this equation. Thus,

d

dt
(e�tP2) = �2t

and, after integrating and using the initial condition P2(0) = 0,

P2(t) =
(�t)2

2
e−�t (5.31)

for all t ≥ 0.
One can go through the same procedure leading to (5.31) to obtain the

formula

P3(t) =
(�t)3

3!
e−�t

for P3(t), and this suggests the general formula for Pm(t), m = 0, 1, 2, . . ., to be

Pm(t) =
(�t)m

m!
e−�t for t ≥ 0. (5.32)

We will establish this formula by induction on m. Observe that we have already
established the basic case m = 0 in the formula (5.22) (note that 0! = 1). Next,
for the inductive step, assume that the formula (5.32) holds for m, and we seek
to show that it also holds for m+ 1. Using the state diagram 5.2.1 we see that

Pm+1(t+ Δt) = Pm(t) ⋅ �Δt+ Pm+1(t) ⋅ (1− �Δt),
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from which we are led to the differential equation

d

dt
(Pm+1) = −�Pm+1 + �Pm(t) (5.33)

or, using the inductive hypothesis (5.32),

d

dt
(Pm+1) = −�Pm+1 +

�m+1tm

m!
e−�t.

We can solve this differential equation as we solved (5.30), by first rearranging
and multiplying by e�t to get

e�t
d

dt
(Pm+1) + �e�tPm+1 =

�m+1tm

m!
,

and then re–writing the left–hand side of this equation. Thus,

d

dt
(e�tPm+1) =

�m+1tm

m!

and, after integrating and using the initial condition Pm+1(0) = 0,

Pm+1(t) =
(�t)m+1

(m+ 1)!
e−�t

for all t ≥ 0, since (m + 1)! = (m + 1)m!. This establishes the formula (5.32)
for the case m+ 1, and formula (5.32) is now proved for all m = 0, 1, 2, . . .

The formula (5.32) gives the probabilities of the events [M(t) = m] for
all values, m, of the random variable M(t). We see that the distribution in
(5.32) is the probability distribution function of a Poisson random variable with
parameter �t. It then follows by the calculations performed in Section 5.1.5
that the expected value of M(t) is �t. Thus, on average, there will �t mutations
in the time interval [0, t]. Thus, � is the average number of mutations per unit
time.

Since M(t) has a Poisson distribution with parameter �t for each t, M(t) is
called a Poisson random process. This particular random process is character-
ized by the assumptions (i)–(iv) that we made on M(t).
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Chapter 6

Modeling Bacterial
Resistance

The model for M(t), the number of mutations that occur in a culture in the
time interval [0, t], that we developed in the previous chapter does not take into
account the fact that the bacterial population is growing with time. In actuality,
the expected number of mutations that occur in that period of time should
depend on the population size (the more bacteria in the culture, the higher the
chances of more mutations). Thus, we need to incorporate the population size,
N(t), and the fact that it is growing into a new model for M(t).

In the previous chapter we modeled M(t) by a Poisson process with mean
E(M(t)) = �t, where �, the average number of mutations per unit time, was
assumed to be constant. We will modify the model by making � depend on the
population size. In order to do this, we will denote the expected value of M(t)
by �(t), the average number of mutations in the time interval [0, t]. The function
�(t) will be differentiable, and will depend on the the bacterial density N(t);
the form of the relationship between � and N will be made explicit shortly. We
will again model M(t) by a Poisson process; this time, the parameter will be
�(t) instead of �t. This is equivalent to replacing the assumption (iii) in the
previous chapter by

P (new mutation in [t, t+ Δt]) = �′(t)Δt.

We then get the following distribution formulas for M(t):

P0(t) = P [M(t) = 0] = e−�(t), (6.1)

Pm(t) = P [M(t) = m] =
(�(t))m

m!
e−�(t),

for t ≥ 0 and m = 1, 2, 3, . . .
The formula in (6.1) suggests an experimental way for estimating �(t). Sup-

pose a series of cultures is run during some time interval [0, t], and the fraction
of those that do not show mutations is determined. This fraction yields an
estimate for P0(t), and from that estimate �(t) can be estimated.

65
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6.1 Modeling the Average Number of Mutations

In order to model �(t), we may postulate that the number of new mutations in
a short time interval [t, t+ Δt] is proportional to the population size at time t.
More specifically, assume that

M(t+ Δt)−M(t) =̃ aΔt N(t),

where a measures the probability that one bacterium will develop a mutation in
a unit of time. This is usually referred to as the mutation rate. Taking expected
values on both sides of the previous equation and dividing by Δt yields

�(t+ Δt)− �(t)

Δt
=̃ aN(t).

Thus, letting Δt→ 0, we conclude that �(t) is differentiable and

d�

dt
= aN(t). (6.2)

If we assume that the bacterial colony is growing according the Malthusian
model ⎧⎨⎩

dN

dt
= kN

N(0) = No,

where k =
ln 2

T
, T being the doubling time or the duration of a division cycle,

then N(t) = Noe
kt. Substituting this into (6.2) we get

d�

dt
= aNoe

kt,

which can be integrated to yield

�(t)− �(0) =

∫ t

0

aNoe
k� d�

=
a

k
No(e

kt − 1).

If there no mutations at time t = 0, �(0) = 0, and so

�(t) =
a

k
(Noe

kt −No),

or
�(t) =

a

k
(N(t)−No). (6.3)

Hence, the average number of mutations which occur in the interval [0, t] is
proportional to the population increment during that time period. The constant
of proportionality is the mutation rate divided by the growth rate.

Observe that equations (6.3) and (6.1) can be combined to yield an experi-
mental estimate of the mutation rate a.
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Example 6.1.1 In one of the experiments involving E. coli and a bacterial
virus that Luria and Delbrück performed in 1943 (see page 504 in [LD43]), 20
cultures, each containing about 5.6 × 108 bacteria, were plated with the virus.
Out of the 20 cultures, 11 showed no resistance to the virus (i.e., they all died
after being exposed to the virus). Out of the other nine cultures, two showed
only 1 resistant bacterium, one showed 3, two showed 5, one showed 6, and the
other three showed 35, 64 and 107, respectively (see also Table 5.1 on page 52
in these notes).

We assume that each culture was the result of one normal bacterium (sensi-
tive to the virus) undergoing cell division for n division cycles. It then follows
that

2n ≈ 5.6× 108,

from which we obtain that n is about
ln(5.6) + 8 ln 10

ln 2
or 29. If no bacterium

in the culture survives the attack of the virus, then no mutation to resistance
occurred during the n cycles. The probability of this occurring is given by P0(t)
where t = n, and t is measured in division cycles. Now, by (6.1),

P0(n) = e−�(n). (6.4)

This probability is estimated by the fraction, po, of cultures which show no

resistant cells. In this example po =
11

20
. From (6.4) we therefore have an

estimate for the average number of mutation in the n cycles

�(n) ≈ − ln po =̇ 0.60.

Hence, an estimate for the mutation rate is given by 6.3 as

a ≈ k�(n)

N(n)
=̇

(ln 2)�(n)

2n
,

where n ≈ 29. It then follows that

a ≈ (ln 2)(0.60)

5.6× 108
=̇ 7.43× 10−10

6.2 Modeling the Number of Resistant Bacteria

In this section we shall model the number of resistant bacteria, R(t), in the time
interval [0, t]. We shall do this under the two different hypotheses studied by
Luria and Delbrück in their 1943 paper [LD43]; namely, (i) the hypothesis of
acquired immunity, and (ii) the hypothesis of mutation to immunity. We begin
with the first one.



68 CHAPTER 6. MODELING BACTERIAL RESISTANCE

6.2.1 Hypothesis of Acquired Resistance

We assume that bacteria become resistant as a result of interaction with the
virus. Thus, if a culture is obtained by cell division from a single bacterium
which is sensitive to the virus over a time interval [0, t], and no exposure to the
virus has occurred during that time period, then no generation of resistant cells
should have occurred. Suppose the culture is exposed to the virus at time t.
Then, after interacting with the virus, some bacteria might develop resistance,
while others will just die. Suppose there is a very small positive probability, a,
that a given bacterium will turn into a resistant one in one division cycle. Let
R denote the number of bacteria that have become resistant after interacting
with the virus. If N is the total number of bacteria in the colony at the time,
then R follows a binomial distribution with parameters a and N . Namely, the
distribution of R is given by

P [R = r] =

(
N

r

)
ar(1− a)N−r for r = 0, 1, 3, . . . , N,

where N is the binomial coefficient defined by(
N

r

)
=

N !

r!(N − r)!
.

It can be shown that the expected value of this distribution is aN , so that
the expected number of resistant bacteria is given by E(R) = aN . Also, the
variance of R can be computed to be var(R) = Na(1− a).

It can also be shown that if N is allowed to grow to +∞ as a decreases to 0
(i.e., a is very small and positive) in such a way that the expected value of R,
aN , is kept at a constant value of �, then

lim
N→∞

P [R = r] =
�r

r!
e−� for all r = 0, 1, 2, 3, . . . (6.5)

The expression in (6.5) can be interpreted as saying that if the number of bacte-
ria, N , is very large and the probability of a given bacterium becoming immune
to the virus is very small (but positive), then the distribution for R can be
approximated by that of a Poisson distribution with parameter � = aN . It
then follows that the expected number of resistant bacteria is � = aN , and its
variance is also given by �. Hence, for large culture of size N , the hypothesis
of acquired immunity predicts that the number of resistant bacteria follows a
Poisson distribution with parameter � = aN , where a is the mutation rate. This
assertion can be tested against experimental data.

Example 6.2.1 (Continuation of Example 6.1.1). Consider again the Luria
and Delbrück experiment in which 20 cultures of about 5.6×108 E. coli bacterial
each were exposed to a lethal virus.

According to the expression in (6.5), the probability that a given culture
shows no resistant bacteria is approximated by e−�. In turn, this probability
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can be estimated by the proportion po =
11

20
of cultures that show no resistant

bacteria. We can therefore get the following estimate for �:

� ≈ − ln po =̇ 0.60.

We can then use this value of � to estimate the probabilities that R takes on
other values according to the expression in (6.5). For instance we get that

P [R = 1] ≈ �e−� =̇ 0.33

Thus, if R has a Poisson distribution, then we would expect to see about 33%
of the cultures showing exactly one resistant bacterium. This amounts to about
7 of the cultures. According to the data in the Luria and Delbrück study
collected for this particular experiment, only 2 out of the twenty cultures show

exactly one resistant bacterium. Similarly, since P [R = 2] ≈ �2

2
e−� =̇ 0.1 by

(6.5), we would expect to see 2 of the cultures showing 2 resistant bacteria; the
data show none. These divergences from what a Poisson distribution predicts
suggest that, perhaps, the distribution of R does not following a Poisson model,
as the hypothesis of acquired immunity predicts. However, the data provided
in Example 6.1.1 come from a small sample of cultures, and therefore do not
provide a strong support for that assertion. A more careful analysis is therefore
required.

6.2.2 Goodness of Fit

We would like to test the hypothesis that the distribution of the number of
resistant bacteria in the Luria and Delbrück experiment follows that predicted
by the hypothesis of acquired hereditary immunity; in other words, the number
of resistant bacteria follows a Poisson distribution as described in equation (6.5).
Thus, we would like to answer the question: Do the data collected by Luria
and Delbrück support the hypothesis of a Poisson distribution for R? The
data considered in the previous examples come from a small sample of cultures,
therefore the conclusion in Example 6.2.1 that R might not follow a Poisson
distribution is only a suggestion that needs further study. Fortunately, Luria
and Delbrück ran several experiments involving many cultures. The data in
Table 6.1 show the distribution of resistant bacteria in an experiment involving
87 cultures, each of about 2.4× 108 bacteria ([LD43], p.505).

Assuming that the distribution of R follows a Poisson model with parameter
�, we can estimate � from the fraction of cultures that show no resistant bacteria,
po, as we did in Example 6.2.1. We obtain

� ≈ − ln po = − ln

(
29

87

)
=̇ 1.1.

We can then use this value for � to estimate the probabilities of seeing r resis-
tant bacteria according to (6.5). These, in turn yield the expected proportions
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Table 6.1: Distribution of Resistant Bacteria in Similar Cultures

Resistant Number of
Bacteria Cultures

0 29
1 17
2 4
3 3
4 3
5 2

6–10 5
11–20 6
21–50 7
51–100 5
101–200 2
201–500 4
501–1000 0

of cultures with r resistant bacteria which are predicted by the Poisson distri-
bution. For instance, the estimated proportion of cultures that are expected to
have exactly one resistant bacterium is approximated by

P [R = 1] ≈ �e−� ≈ (1.1)e−1.1 =̇ 0.37 = 37%.

Thus, we expect 37% of the 87 cultures, or about 32 cultures, to have exactly
one resistant bacterium. Note that this diverges vastly from the observed value
of 17 in Table 6.1. We can continue in this fashion computing expected values of
number of resistant bacteria for various values of r, or ranges of value of r. Table
6.2 shows the results of the calculations. Observe that we have re-categorized
the entries of the “Resistant Bacteria” column to guarantee that the entries in
the “Expected Number” column are all at least 5 (the reason for this will be
discussed shortly).

The fourth column in Table 6.2 shows the relative square–deviation of the
observed values from the predicted values. The sum of the entries in this column
is a statistic1 known as the �2–square statistic. It measures how close the
observed distribution is to the predicted distribution. A large value suggests
that the observed frequencies do not support the hypothesis of the number of
resistant bacteria follow the predicted distribution. A small value means that
the observed frequencies are very close to the predicted ones, and therefore there
is a strong suggestion that the observed distribution follows the predicted one.

1Statistics are quantities computed from sample data. Examples of statistics are the mean
or average of the sample, the sample variance (whose square root yields the standard devia-
tion), proportions of observed frequencies, etc.
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Table 6.2: Expected and Observed Numbers of Resistant Bacteria

Resistant Number of Expected

Bacteria Cultures Number
(O − E)2

E

0 29 29 0
1 17 32 7.03
2 4 18 11.89

3 or more 37 8 105.13

For the data summarized in Table 6.2, the �2–statistic is

�2 ≈ 124,

which is quite big. Thus, it seems plausible that the number of resistant bacteria
does not follow a Poisson distribution as predicted by the hypothesis of acquired
immunity. It is possible to make this assertion more precise by estimating the
probability that a similar experiment involving the same kind of bacteria, the
same number of cultures, and the same number of bacteria per culture, will yield
the same value, or higher, for the �2–statistic. This probability is estimated
under the assumption that the distribution for the number of resistant bacteria
is given by the Poisson distribution.

Let X2 denote a random variable whose values are the sum of the relative
square–deviations of observed values from expected ones in a series of n cate-
gories, or bins. In the case illustrated in Table 6.2, n is 4. If an experiment
yields a sample with a value, �2, for X2, we are interested in computing the
probability

P [X2 ≥ �2]. (6.6)

This probability is usually referred to as the p–value for the hypothesis test.2

In the example we are dealing with, the p–value would be

p–value = P [X2 ≥ 124].

The random variable X2 is obtained from discrete data; however, if the expected
numbers in the bins are big enough (for instance, bigger than 5), then X2 can
be approximated by a continuous random variable. If we knew the probability
density function, f(x), of the continuous approximation, we would be able to
compute the probability in (6.6) by integrating f(x) from �2 to infinity:

P [X2 ≥ �2] =

∫ ∞
�2

f(x) dx.

2This is the probability that a given test–statistic attains the observed value, or more
extreme ones, under the assumption that certain hypothesis, Ho, known as the null hypothesis,
holds true.
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It turns out that the approximating probability density function is known, and
is called the �2–distribution with n − p − 1 degrees of freedom, where p is the
number of parameters that have been estimated from the data, and is denoted
by �2

n−p−1. In our example, we are dealing with �2
2 since n = 4 and p = 1

because we estimated �. In this case, the probability density function is given
by

f(x) =

⎧⎨⎩
1

2
e−x/2 if x ≥ 0;

0 otherwise.

The graph of this function is sketched in Figure 6.2.1. The p–value would then

0 2 4 6 8 10
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x

f(
x)

χ2

Figure 6.2.1: Probability density function for a �2
2 distribution

be the area under the graph of the function to the right of the test–statistic �2.
In this particular case, we can compute the p–value by integrating the density
function, f(x), from �2 to ∞. Thus,

p–value =

∫ ∞
124

1

2
e−x/2 dx = e−62 ≈ 1.2× 10−27,

which is a very small probability indeed! Thus, the likelihood that Luria and
Delbrück would have gotten the results in Table 6.1, under the assumption that
the hypothesis of acquired immunity is true, is practically 0. Hence, the data
offer very strong support for rejecting the hypothesis of acquired immunity.3

We therefore need to set out to look for alternative hypotheses that can explain
the distribution of resistant bacteria observed by Luria and Delbrück.

3In the statistical jargon of Hypothesis Testing, we would say that the data provide statis-
tically significant evidence for rejecting the null hypothesis Ho.
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The formulas and graphs of the probability density functions for �2
d distribu-

tions depend of the degrees of freedom parameter d; that is, different values of
d will yield different formulas and, hence, different graphs. In all cases, though,
the p–value is approximated in the same way. For the example at hand, with
two degrees of freedom, we were able to do a simple integration to do so. How-
ever, for other degrees of freedom we will have to resort to tables or statistical
or mathematical software packages to approximate the p–value. We can also
use a spreadsheet program, like MS Excel, to obtain an estimate of the p–value.
MS Excel has the built–in function CHIDIST(x, d) which returns the so–called
one–tailed probability at x; in other words, CHIDIST(x, d) yields the p–value
for the test statistic x = �2.

For the data in Table 6.2, with �2 ≈ 124, we obtain, using MS Excel, that

p–value = CHIDIST(124, 2) ≈ 1.2× 10−27,

which is what we obtained by integration of f(x) previously.

The test for determining whether a set of observation follows a hypothesized
distribution illustrated in this section is called a �2 Goodness of Fit Test.

6.2.3 Hypothesis of Mutation to Immunity

The largest discrepancy between the predicted and observed frequencies in Ta-
ble 6.2 is found for large values of r. In other words, the distribution of the
observed numbers of resistant bacteria has a “thicker tail” than that for the
Poisson distribution for large value of r. This translates, for instance, into a
larger average value of resistant bacteria than that predicted by the Poisson
distribution (which is �). This suggests that bacteria must have been mutating
into resistant ones long before being exposed to the virus. In addition to this,
mutants have also been replicating into more resistant bacteria just by the nat-
ural growth of the bacteria. This is precisely what the hypothesis of mutation
to immunity in Luria and Delbrück [LD43] says. In the following section we
show how to incorporate the contributions of these two growth processes into
a model for the average number of resistant bacteria under the hypothesis of
mutation to immunity.

Modeling the Expected Number of Resistant Bacteria

Let R(t) denote the number of resistance bacteria in a culture in a time interval
[0, t]. If we assume the hypothesis of mutation to immunity in the Luria and
Delbrück 1943 study [LD43], some bacteria have been mutating randomly into
resistant ones during that time interval. This contributes to the growth of
R(t). In addition, mutant bacteria have also been replicating and producing
new mutants during that time also. In order to model R(t) in this situation, we
consider the change

ΔR = R(t+ Δt)−R(t)
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in the number of resistant bacteria during a short time interval [t, t+Δt], where
Δt is small. If we assume that bacteria are not dying and that there are no
back mutations, then the change ΔR has to be accounted for by

(i) new resistant bacteria resulting from the replication of existing ones; for
simplicity we will assume that the resistant population grows at the same
rate as that of the entire population; that is, with the same per capita
growth rate k; and

(ii) new bacterial mutations to resistance occur during the time integral [t, t+
Δt].

We therefore have that

R(t+ Δt)−R(t) =̃ kΔt R(t) +M(t+ Δt)−M(t) (6.7)

for small Δt.
In this section we will derive an expression for the expected number of re-

sistant bacteria in the time interval [0, t]. We will denote that value by �(t), so
that �(t) = E(R(t)). Thus, taking expected values on both sides of (6.7),

�(t+ Δt)− �(t) =̃ kΔt �(t) + �(t+ Δt)− �(t),

and so, after dividing by Δt and letting Δt → 0, we obtain the differential
equation

d�

dt
= k�(t) + �′(t), (6.8)

where �′(t) = aN(t) by (6.2). Since N(t) = Noe
kt, it follows from (6.8) that

d�

dt
= k�(t) + aNoe

kt. (6.9)

We can solve the differential equation in (6.9) by first re-writing it as

e−kt
d�

dt
− ke−kt�(t) = aNo,

and observing that the left–hand side of the equation is the derivative of e−kt�(t).
In then follows by integration that

e−kt�(t) = aNot+ C,

for some arbitrary constant C, so that

�(t) = aNote
kt + Cekt.

for all t ≥ 0. If we assume that �(0) = 0, it follows that C = 0, and therefore

�(t) = aNote
kt
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or
�(t) = at Noe

kt.

Hence,
�(t) = atN(t) for t ≥ 0. (6.10)

Thus, the fraction of the average number of resistant bacteria,
�(t)

N(t)
, increases

linearly with time.

Table 6.3: Distribution of Resistant Bacteria in Similar Cultures

Resistant Number of
Bacteria Cultures

0 11
1 2
3 1
5 2
6 1
35 1
64 1
107 1

Example 6.2.2 We consider again the data from the Luria and Delbrück ex-
periment discussed in Example 6.1.1. Table 6.3 shows the observed frequencies
of resistant bacteria for that experiment.

Each of the 20 cultures contained about 5.6 × 108 bacteria. Thus, if we
assume that each culture was the result of one normal bacterium (sensitive to
the virus) undergoing cell division for n division cycles, it follows that

2n ≈ 5.6× 108,

from which we obtain that n is about 29.
Thus, if t is measured in division cycles, it follows from (6.10) that the

average number of resistant bacteria at time t = n is given by

�(n) = anN(n),

where the mutation rate, a, was estimated in Example 6.1.1 on page 67 to be
about 7.43× 10−10. Thus, the average number of resistant bacteria per culture
is about 12. This is to be contrasted to the value predicted by the hypothesis
of acquired immunity. In this case, the average number of resistant bacteria

is, approximately,
a

k
N(n) ≈ 0.60. The mean number of resistant bacteria ob-

tained from the data in Table 6.3 is about 11. Observe that the estimate of
the expected number of resistant bacteria predicted by the hypothesis of muta-
tion to immunity is closer to this value than the one predicted by the acquired
immunity hypothesis. □
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Example 6.2.3 Alternatively, we can use the formula in (6.10) to obtain an
estimate of the mutation rate, a, based on the average number of resistant
bacteria per culture obtained from the data in Table 6.3. Denoting the sample
average by R, we have that R = 11.35. We then have that

anN(n) ≈ R,

from which we get the following point estimate for the mutation rate

â =
R

nN(n)
≈ 11.35

(29)(5.6× 108)
≈ 6.99× 10−10.

We will see in the next section that the estimate for a obtained here is a better
estimate for the mutation rate than the one obtained in Example 6.1.1, which
was based on the hypothesis of acquired hereditary immunity.

Modeling the Number of Resistant Bacteria

Let R(t) denote the number of resistant bacteria in a time interval [0, t]. Ac-
cording to the hypothesis of mutation to immunity, R(t) is determined by the
number of mutations, M(t), that occur in that time interval, as well as number
of new resistant bacteria that come about as the result of replication of mutant
cells. Here we are assuming that bacteria are not dying in the time interval
[0, t], and that there are no back–mutations from resistance to sensitivity to the
virus. Assume also that the resistant population of bacteria is growing at the
same rate as the total population, and that the growth is Malthusian with per
capita growth rate k.

We have seen that mutations occur randomly according to a Poisson process
with parameter �(t), where �′(t) = aN(t), a being the mutation rate, and N(t)
being the total number of bacteria at time t. These mutations occur at various
times �i, where i = 1, 2, 3, . . . ,M(t), during the time interval [0, t]; thus, �i is
the time at with the ith mutation occurred. After that time �i, a single mutant
cell will grow exponentially into ek(t−�i) resistant bacteria at time t (Why?). It
then follows that

R(t) =

M(t)∑
i=1

ek(t−�i). (6.11)

It is not an easy task to determine the probability distribution, P [R(t) = r]
for r = 0, 1, 2, 3, . . ., for this random process. Luria and Delbrück were able to
compute the expected value and variance for R(t) in their 1943 paper [LD43].
It was not until six years later that Lea and Coulson [LC49] derived a formula
that can be used to generate the probabilities

pr(t) = P [R(t) = r] for r = 0, 1, 2, 3, . . . (6.12)

In this section, and the next one, we outline how that might be done.
First note that the probabilities, pr, in (6.12) are functions of N = N(t), the

total bacterial population, which in turn is a function of t. The reason for this
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is that the average number of mutations, �(t), is a is a function of N according
to (6.3). Thus, (6.12) should read

pr(N) = P [R(t) = r,N(t) = N ] for r = 0, 1, 2, 3, . . . (6.13)

For each r = 0, 1, 2, . . ., the probability pr(N) can be estimated by the propor-
tion of cultures of size N which show r resistant bacteria.

Assume that each culture in the Luria and Delbrück experiment was grown
from a single bacterium. Then, from (6.3) we get

�(t) =
a

k
(N(t)− 1),

where a is the mutation rate. If t is such that N(t) is of the order of 108, as was
the case in the Luria and Delbrück experiments, then we have the approximation

�(t) =
a

k
N(t). (6.14)

We consider the change in the resistant population over a small time interval
[t, t + Δt]. Over that time period, the total population changes from N to
N + ΔN , where ΔN ≈ kNΔt. We would like to estimate the probability that
a culture containing N + ΔN bacteria will have r resistant bacteria (namely
pr(N + ΔN)) for a very small population increment ΔN . In order to do this,
we consider the state diagram pictured in Figure 6.2.2.

"!
# 
"!
# 
"!
# 

1−
a

k
ΔN − (r − 1) ΔN

N 1−
a

k
ΔN − rΔN

N
1−

a

k
ΔN − (r + 1) ΔN

N

r − 1 r r + 1

� � �� � � � � �
? ? ?

q q q

1 1 1

q q q

1 1 1

(r − 1) ΔN
N rΔN

N (r + 1) ΔN
N

a

k
ΔN

a

k
ΔN

a

k
ΔN

Figure 6.2.2: State diagram for R(t)

The arrows indicate transition probabilities from a given value of R(t) to
the next value, or the same, at the end of the small time interval [t, t + Δt]
(we are assuming here that the time interval [t, t+ Δt] is so small that at most
one addition to the resistant population can be made). To understand the state
diagram in Figure 6.2.2, consider the state of there being r resistant bacteria
at the end of the time interval [t, t + Δt], when the total bacterial population
is about N + ΔN . This might have come about as the result of three possible
transitions into that state (pictured in Figure 6.2.2 as the three arrows pointing
to the circle around r):

(i) one sensitive bacterium might have mutated into a resistant one; the prob-
ability of this occurrence is approximately

�′(t)Δt = aNΔt =
a

k
(kNΔt) ≈ a

k
ΔN.
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These probabilities are printed below the bottom arrows in the diagram;

(ii) one of the r − 1 resistant bacteria present at time t (when the population
was N) might have divided producing one additional resistant bacterium;
the probability of this occurrence is approximated by

R′(t)Δt = kR(t)Δt = k(r − 1)Δt,

by the assumption that the resistant population is growing at the same
per capita growth rate, k, as the total population. From ΔN ≈ kNΔt,
we get that the probability of this transition for small values of Δt is
approximated by

(r − 1)
ΔN

N
,

which is printed in the diagram above the arrow connecting the state r−1
to the state r.

(iii) there might have been r resistant bactria at the start of the interval [t, t+
Δt] and no mutation to resistance, or division of a resistant bacterium,
occured in that time interval. This is represented in the diagram by the
arrow from state r that loops back to that state. The probability of this
occurrence is approximated by

1− a

k
ΔN − rΔN

N
.

It then follows that

pr(N +ΔN) ≈ pr−1(N)

(
a

k
ΔN + (r − 1)

ΔN

N

)
+pr(N)

(
1− a

k
ΔN − rΔN

N

)
.

Rearranging and dividing by ΔN , we get

pr(N + ΔN)− pr(N)

ΔN
≈ pr−1(N)

(
a

k
+
r − 1

N

)
− pr(N)

(a
k

+
r

N

)
.

Thus, letting ΔN → 0, we conclude that pr is differentiable with respect to N
and

dpr
dN

= pr−1(N)

(
a

k
+
r − 1

N

)
− pr(N)

(a
k

+
r

N

)
,

which we can rewrite as

dpr
dN

+
(a
k

+
r

N

)
pr =

(
a

k
+
r − 1

N

)
pr−1. (6.15)

This is the differential equation that Lea and Coulson derived in their 1949
paper [LC49]. It is a linear first order equation for pr = pr(N) in terms of
pr−1. Thus, the equations in (6.15) for r = 1, 2, 3, . . . also represent a system
of difference equations. These can be solved recursively if we know po(N). To
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k
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a

k
ΔN − ΔN

N
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q
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a

k
ΔN

a

k
ΔN

Figure 6.2.3: State diagram for R(t) around r = 0

find out what po is, we consider the beginning of the state diagram in Figure
6.2.2; namely, the portion of the diagram starting at state r = 0 (i.e., there are
not resistant bacteria at a time when the population size equals N) and which
is pictured in Figure 6.2.3.
From the state diagram in Figure 6.2.3 we get that

po(N + ΔN) ≈ po(N)
(

1− a

k
ΔN

)
.

Rearranging and dividing by ΔN we have that

po(N + ΔN)− po(N)

ΔN
≈ −a

k
po(N),

which, after letting ΔN → 0, leads to the differential equation

dpo
dN

= −a
k
po. (6.16)

This equation can be solved by separating variables to yield

po(N) = Ce
−
a

k
N
,

for some constant C. Thus, by virtue of (6.14), we have that

po(t) = Ce−�(t),

where �(t) is the average number of mutations in the interval [0, t]. Since there
are no mutations at t = 0, po(0) = 1 and so C = 1, from which we get that

po = e−�. (6.17)

This is the expression we have seen before for the fraction of cultures in the
Luria and Delbrück experiments that show no resistant bacteria. This provides
a way for estimating the average number of mutations �. Equation (6.17) also
suggests that po, as well as pr for all r ≥ 1, can be thought as a function of �
instead of N . In fact, from 6.14 we get the change of variables

� =
a

k
N, (6.18)
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which can be used, along with the chain rule, to show that

dpr
d�

=
dN

d�

dpr
dN

=
k

a

dpr
dN

, (6.19)

for r = 0, 1, 2, . . . Thus, multiplying equation (6.16) by
k

a
yields

dpo
d�

= −po, (6.20)

which yields (6.17) as a solution satisfying po(0) = 1.

Similarly, multiplying the differential equation in (6.15) by
k

a
and using the

change of variables formulas (6.18) and (6.19), we get from (6.15) that

dpr
d�

+

(
1 +

r

�

)
pr =

(
1 +

r − 1

�

)
pr−1 (6.21)

for r = 1, 2, 3 . . .
In the next section we will solve the system of difference–differential equa-

tions (6.20)–(6.21), for r = 1, 2, 3, . . . subject to the initial conditions

po(0) = 1 (6.22)

pr(0) = 0 for r = 1, 2, 3, . . . (6.23)

The solution to this initial value problem have come to be known in the literature
of microbial genetics as the Luria–Delbrück Distribution.

6.2.4 The Luria–Delbrück Distribution

In this section we solve the system of difference–differential equations (6.20)–
(6.21) subject to the initial conditions (6.22)–(6.23). First, rewrite the equations
in (6.21) as

dpr
d�

+ pr +
r

�
pr =

(
1 +

r − 1

�

)
pr−1,

and multiply by e� to get

e�
dpr
d�

+ e�pr +
r

�
e�pr =

(
1 +

r − 1

�

)
e�pr−1,

or
d

d�
(e�pr) +

r

�
(e�pr) =

(
1 +

r − 1

�

)
(e�pr−1) .

Thus, introducing the new variable

qr = e�pr, (6.24)
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we get that

dqr
d�

+
r

�
qr =

(
1 +

r − 1

�

)
qr−1 for r = 1, 2, 3, . . . , (6.25)

where
q0 = 1 (6.26)

by (6.17). We then need to solve the system of difference–differential equations
(6.25) subject to the initial conditions

qr(0) = 0 for r = 1, 2, 3, . . . , (6.27)

by virtue of (6.24) and (6.23), given that q0 = 1 by (6.26).
We begin with the case r = 1. In this case (6.25) and (6.26) lead to the

differential equation
dq1

d�
+

1

�
q1 = 1.

To solve this equation, multiply on both sides by � to get

�
dq1

d�
+ q1 = �,

and observe that this equation can be written as

d

d�
(�q1) = �.

This last equation can be integrated with respect to � to get

�q1 =
�2

2
+ C,

for some constant C. Solving for q1 we get

q1 =
�

2
+
C

�
.

For this function to be defined at � = 0, we must have that C = 0. We therefore
get that

q1 =
�

2
. (6.28)

Thus, by (6.24), we also get that

p1 =
�

2
e−�. (6.29)

Next, we proceed with the case r = 2. In this case (6.25) and (6.28) yield the
differential equation

dq2

d�
+

2

�
q2 =

(
1 +

1

�

)
�

2
,
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or
dq2

d�
+

2

�
q2 =

�

2
+

1

2
.

Multiply on both sides of this equation by �2 to get

�2 dq2

d�
+ 2�q2 =

�3

2
+
�2

2
,

and observe that this can be rewritten as

d

d�

(
�2q2

)
=
�3

2
+
�2

2
.

Integrating this last equation with respect to � we get

�2q2 =
�4

8
+
�3

6
+ C,

where, as before, C must be taken to be 0 for q2 to be defined when � = 0.
Thus,

q2 =
�2

8
+
�

6
, (6.30)

and therefore, by (6.24),

p2 =

(
�2

8
+
�

6

)
e−�. (6.31)

We can continue in this fashion, recursively computing qr given that qr−1 is
known. For instance, in the case r = 3 we are lead to the differential equation

dq3

d�
+

3

�
q3 =

1

8
�2 +

5

12
�+

1

3
(6.32)

Multiplying4 this equation by �3 and rewriting, leads to

d

d�

(
�3q3

)
=

1

8
�5 +

5

12
�4 +

1

3
�3 (6.33)

Integrating (6.33), and making sure that q3 is defined at � = 0, as before, we
obtain

q3 =
1

48
�3 +

1

12
�2 +

1

12
� (6.34)

and therefore, by (6.24),

p3 =

(
1

48
�3 +

1

12
�2 +

1

12
�

)
e−�. (6.35)

4The process of going from (6.32) to (6.33) my multiplying by �3 is an instance of the
integrating factor technique to solve a linear first order differential equation of the form
dq
d�

+ f(�)q = g(�). In this case, �3 is the integrating factor for the differential equation

(6.32). In an Appendix we show how to find an integrating factor in general
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Proceeding in a similar way for the case r = 4, given that we know q3 by (6.34),
we obtain

p4 =

(
1

384
�4 +

1

48
�3 +

1

18
�2 +

1

20
�

)
e−�. (6.36)

Lea and Coulson provide a scheme for computing pr for r = 1, 2, 3, . . . in their
1949 paper [LC49]. However, more recently in 1992, Ma, Sandri and Sarkar
[MSS92] established the recursive formula

pr =
�

r

r−1∑
i=0

pi
r + 1− i

for r = 1, 2, 3, . . . (6.37)

given that po = e−�, as established in (6.17). It can be verified that the formula
(6.37) leads to the formulas (6.29), (6.31), (6.35) and (6.36).

Table 6.4: Distribution of Resistant Bacteria in Similar Cultures

Resistant Number of
Bacteria Cultures

0 29
1 17
2 4
3 3
4 3
5 2

6–10 5
11–20 6
21–50 7
51–100 5
101–200 2
201–500 4
501–1000 0

Goodness of Fit for the Luria–Delbrück Distribution

We would like to test how close the data in Table 6.4 are to the expected values
predicted by the Luria–Delbrück distribution given by the recursive formulas in
(6.37). The data in Table 6.4 come from Experiment No. 23 in [LD43] (p. 505)
involving 87 cultures, each of about 2.4 × 108 bacteria. Table 6.5 summarizes
the data along with the probabilities predicted by the hypothesis of mutation
to immunity. These are listed in the third column. As was done when we
were testing the hypothesis of acquired immunity, the entries in the “Resistant
Bacteria” column in Table 6.4 have been re-categorized so that the entries in
the “Expected Number” column are all at least 5; in addition, we kept the same
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categories as in Table 6.2 on page 71 so we are able to compare the analysis
here to that done for the hypothesis of acquired immunity (the one that predicts
that the distribution should be Poisson).

Table 6.5: Expected and Observed Numbers of Resistant Bacteria

Resistant Number of pr Expected

Bacteria Cultures Number
(O − E)2

E

0 29 0.3333 29 0
1 17 0.1831 16 0.0625
2 4 0.1113 10 3.6

3 or more 37 0.3723 31 1.1613

The fifth column in Table 6.5 contains the relative square–deviations of ob-
served values from the expected ones. Adding the entries in this column yields
the �2–statistic for this test; namely, �2 = 4.8238. Since there are four cate-
gories or bins, the number of degrees of freedoms is d = 4 − 1 − 1 = 2, since,
again, we had to estimate one parameter, namely �, from the data. We there-
fore use the �2

2 distribution to estimate the p–value for this test. Using the MS
Excel CHIDIST function we obtain the p–value

p–value = CHIDIST(4.8238, 2) ≈ 0.09 or about 9%.

This probability is much larger than the one obtained for the hypothesis of
acquired immunity, and therefore the distribution of resistant bacteria described
by the data is closer to that predicted by the Luria–Delbrück distribution than
to that predicted by the Poisson distribution.

Alternatively, since the p–value is larger than 5%, then �2–statistic is smaller
than the critical value for �2

2–distribution at the significance level � = 0.05 or
5%. In fact, in this case �2

critical = 5.99, and so �2 < �2
critical. Therefore, at

the 5% significance level, the data in Table 6.4 are in accord with the Luria–
Delbrück distribution, and hence with the hypothesis of mutation to immunity.



Chapter 7

Exercises

1. Show that the solution to the difference equation

Xt+1 = Xt

must be constant.

2. Consider the population model given by the difference equation

Nt+1 −Nt = m,

where m is a constant, for t = 0, 1, 2, . . ..

(a) Give an interpretation for this model.

(b) If the initial population density is No, what does this model predict
in the long run? Consider the two possibilities m < 0 and m > 0.

(c) How does this model compare with the Malthusian model?

3. Assume that the per–capita growth rate � of a population is less than 1;
that is, left on its own, the population will go extinct. To avoid extinction,
suppose that after each unit of time, a constant number m of individuals
of the same species is added to the population.

(a) Write down a difference equation that models this situation.

(b) Solve the difference equation and discuss what this model predicts in
the long run.

For this problem, it will be helpful to know that

1 + �+ �2 + ⋅ ⋅ ⋅+ �n−1 =
�n − 1

�− 1
for � ∕= 1,

and that
lim
n→∞

�n = 0 if∣�∣ < 1.
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(c) How does this model compare with the Malthusian model?

4. Problem 1.1.2 on page 6 in [AR04].

5. Problem 1.1.6 on page 7 in [AR04].

6. Problem 1.1.10 on page 7 in [AR04].

7. Modeling Red Blood Cell Production1. In the circulatory system, red blood
cells (RBCs) are constantly being filtered out and destroyed by special-
ized “clean–up” cells in the spleen and liver, and replenished by the bone
marrow. Since the cells carry oxygen throughout the body, their numbers
must be maintained at some constant level. In this set of problems, we
model the removing of RBCs by the spleen and liver, and their replenish-
ing by the bone marrow in order to understand how the RBC levels may
be maintained.

Assume that the spleen and liver remove a fraction f of the RBCs each day,
and that the bone marrow produces new cells at a daily rate proportional
to the number of RBCs lost on the previous day with proportionality
constant 
.

Derive a system of two difference equations for Rt, the RBC count in
circulation on day t, and Mt, the number of RBCs produced by the bone
marrow on day t, where t = 1, 2, 3, . . .

Suggestion: Consider the number of RBCs in circulation on day t + 1,
Rt+1. By the conservation principle, the change Rt+1−Rt in the number
of RBCs from day t to day t+ 1 must be equal the number of new RBCs
produced on day t minus the number of RBCs that were removed on that
same day. On the other hand, the number of new RBCs produced by the
bone marrow on day t+ 1, Mt+1, must be given by the expression

Mt+1 = 
 × (Number of RBCs removed on day t).

8. Red Blood Cell Production (continued). By considering the number of
RBCs in circulation on day t+2, we are able to combine the two difference
equations derived in the previous problem into a single difference equation
of the form

Rt+2 = bRt+1 + cRt, (7.1)

where b and c are constants. Determine expressions for b and c in terms
of f and 
.

Equation (7.1) is an example of a linear second order difference equation.

9. Red Blood Cell Production (continued). We may seek to find a solution to
the linear second order difference equation (7.1) as follows:

1Edelstein–Keshet [EK88], pg. 27
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(a) Assume that the sought after solution is of the form Rt = A�t,
where A is some constant that will depend on the initial conditions,
and � is a parameter that is to be determined by substituting into
the difference equation. Substitute this assumed form for Rt into
equation (7.1) to obtain an expression for �. Assuming that neither
A nor � are zero, simplify the expression to get the second order
equation

�2 = b�+ c. (7.2)

(b) Solve equation (7.2) for � to obtain two possible solutions �1 and �2

in terms of f and 
, where �1 < �2.

(c) Verify that A1�
t
1 and A2�

t
2, where A1 and A2 are arbitrary constants,

both solve the difference equation (7.1).

(d) Verify that
Rt = A1�

t
1 +A2�

t
2, (7.3)

where A1 and A2 are arbitrary constants, also solves the difference
equation (7.1).

The function Rt in equation (7.3) is called the general solution of the
difference equation (7.1).

10. Red Blood Cell Production (continued). Assume that 1% of the RBCs are
filtered out of circulation by the spleen and liver in a day; that is f = 0.01.

(a) If 
 = 1.50, what does the general solution (7.3) predict about the
RBC count as t→∞?

(b) Suppose now that 
 = 0.50. What does the general solution (7.3)
predict about the RBC count as t→∞?

(c) Suppose now that 
 = 1. What does the general solution (7.3) predict
about the RBC count as t→∞?

(d) Which of the three values of 
 discussed in the previous three parts
seems to yield a reasonable prediction? What implication does that
have about RBC levels in the long run?

11. Problem 1.1.11 on page 8 in Allman and Rhodes.

12. Problem 1.2.7 on page 18 in Allman and Rhodes.

13. Problem 1.2.8 on page 18 in Allman and Rhodes.

14. (US Census Data.) The MS Excel file CensusDataUS in the Math 36 web-
page (see the courses website at http://pages.pomona.edu/˜ajr04747)
contains the total US population (in millions of people) for each year that
a census has been taken in the United States.

(a) Use MATLABR⃝to get a plot of the US population as a function of t,
where t is in units of 10 years since the year 1790.
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(b) If the US population follows a Malthusian model, what would the
growth rate � be? Using this value of �, compute the population
values that the model predicts for t = 1, 2, 3, . . . Plot the predicted
and actual values on the same graph. How well do these predictions
compare with the actual data?

15. (US Census Data, continued). Starting with the solution to the Malthu-
sian model: Nt = N0�

t, take logarithms on both sides to get

lnNt = lnN0 + t ln(�).

Thus, the relationship between lnNt and t should be linear with slope
ln(�) and y–intercept lnN0.

(a) If X represents a row of values, and Y another row of values of the same
size, the MATLABR⃝ function polyfit(X,Y,1) returns the slope m
and y–intercept yo of the line that best fits the data (in the sense of
least squares regression) in X and Y:

y = mx+ yo.

Use this function to obtain estimates for the values of lnN0 and ln(�)

(b) Obtain estimates for N0 and �, and use them to generate a new set
of predicted values for the US population. Plot these, along with the
actual data, and assess how good the fit is.

16. (Numerical Analysis of the Logistic Equation). In this problem and the
next two, you are asked to use the MATLABR⃝program Logistic.m to
explore how the nature of the solutions to the logistic difference equation

Nt+1 = Nt + rNt(1−Nt) (7.4)

changes as one varies the parameter r and the initial condition No. The
code for Logistic.m may be found in the Math 36 webpage of the courses
website at http://pages.pomona.edu/˜ajr04747.

Start out with the initial condition No = 0.1 and consider the following
values of r: 1, 1.5, 2, 2.1, 2.25, 2.5 and 2.7. Describe in words the long term
behavior of the solution to (7.4) for each value of r. Is there any significant
change in the structure of the solution? Is there anything striking?

17. (Numerical Analysis of the Logistic Equation, continued). Keep the value
of r at 2.7 and try the following initial conditions:

No = 0.1 and No = 0.101.

Before you try the second initial condition, type the MATLABR⃝command
hold on. This will allow you to see the plots of the two solutions on the
same graph. Is there anything that strikes you? What implications does
this result might have on the question of predictability?
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18. (Numerical Analysis of the Logistic Equation, continued).

(a) What happens when r = 3 and t is allowed to range from 0 to 100?
How would you describe the solution?

(b) What happens when r = 3.01? Does this result suggest that we need
to impose a restriction on r? What should that restriction be?

19. Problems 1.1.16 (a)(b) on pages 9 and 10 in Allman and Rhodes.

20. Problems 1.1.16 (c)(d) on page 10 in Allman and Rhodes.

21. Suppose that Xt satisfies the difference inequality

∣Xt+1∣ ≤ �∣Xt∣ for t = 0, 1, 2, 3, . . .

where 0 < � < 1. Prove that

lim
t→∞

Xt = 0.

22. The Principle of Linearized Stability for the difference equation

Nt+1 = f(Nt)

states that, if f is differentiable at a fixed point N∗ and

∣f ′(N∗)∣ < 1,

then N∗ is an asymptotically stable equilibrium solution.

In this problem we use the Principle of Linearized stability to analyze the
following population model:

Nt+1 =
kNt
b+Nt

where k and b are positive parameters.

(a) Write the model in the form Nt+1 = f(Nt) and give the fixed points
of f . What conditions of k and b must be imposed in order to ensure
that the model will have a non–negative steady state?

(b) Determine the stability of the equilibrium points found in part (a).

23. Problems 1.3.6 (d)(e) on page 29 in Allman and Rhodes.

24. Problems 1.3.7 (d)(e) on page 29 in Allman and Rhodes.

25. Problems 1.3.111 (a)(b)(c)(d) on page 30 in Allman and Rhodes.

Note: The code for the MATLABR⃝program onepop may be downloaded
from the courses website at http://pages.pomona.edu/˜ajr04747.
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26. Problems 1.2.9 and 1.2.10 on page 18 in Allman and Rhodes.

27. Problems 1.3.1 and 1.3.2 on page 28 in Allman and Rhodes.

28. (US Census Data, Revisited.) In this problem and the next, we fit a
logistic curve to the US Census data contained in the MS Excel file Census-
DataUS.xls in the Math 36 website (http://pages.pomona.edu/˜ajr04747)

The idea for this fit is to observe that, if we write the logistic difference
equation

Nt+1 = Nt + rNt

(
1− Nt

K

)
in the form

ΔN

Nt
= r − r

K
Nt, where ΔN = Nt+1 −Nt, then the logistic

model predicts that the relationship between the relative increments
ΔN

Nt
and Nt should be linear with slope −r/K and y–intercept r. Thus, the pa-
rameters r and K can be estimated from the data by a linear, least–squares
regression fit of the relative increments versus the population density.

(a) Use MATLABR⃝to define an array, Y, made up of the relative incre-
ments of the US population since census started being taken. The
size of this new array should be one less than the size of the US
population array.

(b) Define an array, N, made up of the US population values up to the
next to the last one (i.e., the census values from 1790 to 1990).

(c) Plot Y versus N. Use the MATLABR⃝command plot(N,Y,’k*’) and
then type hold on in the command window in order to keep the plot.

(d) Use the MATLABR⃝command polyfit(N,Y,1) to obtain the slope,
m, and y–intercept, b, of the least–squares regression line of Y versus
N, and sketch the this line on the same graph obtained in the previous
part.

(e) Use the slope and y–intercept obtained in the previous part to esti-
mate the intrinsic growth rate, r, and carrying capacity, K, for the
US population.

29. (US Census Data, Revisited (continued).)

(a) Use the estimates for r and K obtained in the previous problem,
and the US population in 1790 as No, to compute population values
predicted by the logistic model for each of the decades since 1790
until 2000. You may use the MATLABR⃝.m–file LogisticK.m to do
these calculations

(b) Plot the predicted and actual values on the same graph. How well
do these predictions compare with the actual data? How does this fit
compare with the Malthusian model fit of the data done in Problem
(5) of Assignment #3?



91

30. Use the procedure outlined in the previous two problems to fit a logistic
curve through the Insect Population Values data found in Table 1.6, p.
18, in Allman and Rhodes. What are the estimated values of r and K for
the insect population?
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Appendix A

MATLAB Files

A.1 Solving the Discrete Logistic Equation

A.1.1 Code for Logistic.m

% Logistic.m

% Author: Adolfo J. Rumbos

% This program allows the user to input initial condition for a logistic

% difference equation. It also allows for the input of the intrinsic growth

% rate. The carrying capacity is assumed to be K=1. The program can also

% iterate the equation for as many generations as desired.

%

%

disp(’ ’)

disp(’This program finds and plots solutions to the logistic difference equation’)

disp(’ ’)

disp(’ N_{t+1} = N_t + r*N_t*(1-N_t)’)

disp(’ ’)

disp(’ ’)

disp(’Enter the intrinsic growth rate "r"’)

r=input (’r = ’);

%

disp(’ ’)

disp(’Enter the initial population value "N_0"’)

N_0=input (’N_0 = ’);

%

disp(’ ’)

disp(’Enter the number of generations:’);

gen=input(’(Default is 20) ’);

if isempty(gen) gen=20; end;

%

p=N_0;
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N=p;

for i=1:gen; p = p + r*p*(1 - p);

N=[N p]; end

%

% Plotting routine

plot([0:gen], N, ’k-*’)

y_max = max([N_0 N]) + 0.1;

axis([0 gen 0 y_max]); grid on;

title([’Logistic model with r = ’, num2str(r), ’, K=1, ’, ’and ’,

’N\_0 = ’, num2str(N_0)])

xlabel(’Time t’);

ylabel(’Population N’);
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